CB 311 Introduction to Construction Management
 Dr. Mohamed Saeid Eid

$$
\text { Fall - } 2017
$$

Engineering Economics

What is engineering economics?

- It is the scientific approach in analyzing designs and alternatives to evaluate their worth and value.

Examples of Engineering Economics Usage

- Purchase of new excavator vs repairing old one.
- Long term vs. short term investments
- Comparison between two infrastructure projects

Engineering Economics

- Factors - Nominal a Effective Int. Rates	$\begin{aligned} & -N P V \\ & - \text { EAW } \\ & -~ R D R ~ \\ & -B / C \end{aligned}$	- Replacement Decisidn - Breakeven Analysis	- Depreciatian - Sensitivity Ana/ysis - Ecanamic Feasibility

Study Approach (Blank and Tarquin, 2005)

Time Value of Money

- A dollar's value today is higher than in the future.

- Borrowing Gold, vs Cattle, vs Money \square Time IIN.....!

Interest rate

- Interest: it is a measure of increase between the original sum borrowed or invested and the final amount owned or accrued

$$
\begin{gathered}
\text { Interest }=\text { Total amount accumulated }- \text { Original Investment } \\
\text { Interest }=\text { Present amount owed }- \text { Original Loan } \\
\text { Interest Rate }=\frac{\text { interest accured per unit time }}{\text { Original amount }} \times 100 \%
\end{gathered}
$$

Example

A contractor borrows $\$ 10,000$ from the bank on May 1st and must repay a total of \$10,700 exactly one year later. Determine the interest amount and the interest rate paid.

- Solution

Interest per year $=\$ 10,700-10,000=\$ 700$
Present interest rate $=\frac{\$ 700}{\$ 10,000} \times 100 \%=7 \%$ per year

Example

- Lets say you plan to borrow $\$ 20,000$ from a bank for 1 year at 9% interest for new a new car. Compute the interest and the total amount due after 1 year.

Solution

$$
\text { Interest }=\$ 20,000(0.09)=\$ 1800
$$

The total amount due is the sum of principle and interest.

$$
\text { Total due }=\$ 20,000+1800=\$ 21,800
$$

Example

- Calculate the amount deposited 1 year ago to have $\$ 1000$ now at an interest rate of 5% per year.
- Calculate the amount of interest earned during this time period.

Solution

a) The total amount accrued is the sum of the original deposit and the earned interest. If x is the original deposit,
Total accrued $=$ original + original (interest rate)
$\$ 1000=X+X(0.05)=X(1+0.05)=1.05 X$
the original deposit is $X=1000 / 1.05=\$ 952.38$
b) Interest earned.

Interest $=\$ 1000-952.38=\$ 47.62$

Equivalence

- Going back to time value of money and interest rates, we developed the concept of Economic Equivalence.
- Economic equivalence means that different sums of money at different times will be of equal economic value

Example

- Assume you are storing steel for projects throughout the next year. If the storage of steel cost around 5\% per year of the total cost, determine which of the following statements are true.
a. The amount of $\$ 98$ now is equivalent to a cost of $\$ 105.60$ one year from now.
b. A ton of steel costs o\$200 one year ago is equivalent to $\$ 205$ now.
c. A $\$ 38$ cost now is equivalent to $\$ 39.90$ one year from now.
d. A $\$ 3000$ cost now is equivalent to $\$ 2887.14$ one year ago.
e. The carrying charge accumulated in 1 year on an investment of $\$ 2000$ worth of steel is \$ 100.

Solution

a) Total amount accrued $=98(1.05)=\$ 102.90 \neq 105.60$: therefore, it is false. Another way to solve this is as follows:
required original cost is $105.60 / 1.05=\$ 100.57 \neq \$ 98$.
b) Required old cost is $205.00 / 1.05=\$ 195.24 \neq \$ 200$; therefore, it is false.
c) The cost 1 year from now is $\$ 38(1.05)=\$ 39.90$; true.
d) Cost now is 2887.14(1.05) = $\$ 3031.5$; false.
e) The charge is 5% per year interest, or $2000(0.05)=\$ 100$; true.

Key Parameters in Engineering Economics

- Interest rate and amount
- Time, or number of periods
- Present value
- Future value
- Period values

Terminology

- I =amount of interest paid
- $\mathrm{i}=$ interest rate per period of time
- $\mathrm{n}=$ number of periods
- $P=$ initial value, principal
- $F=$ future value after n periods
- $\mathrm{A}=$ series of payment of periodic values

Simple interest rate

- What we learned so far is a simple interest rate

$$
\begin{gathered}
F=P+I \\
I=P * n * i \\
F=P^{*}(1+n * i)
\end{gathered}
$$

- This approach does not accumulate interests overtime.

Example

An engineering company has loaned money to a staff engineer. The loan is $\$ 1000$ for 3 years at 5% per year simple interest. How much money will the engineer repay at the end of 3 years?

Solution

The interest for each year of the 3 years is $=1000(0.05)=\$ 50$

- Total interest for 3 years $=$ P n i $=1000(3)(0.05)=\$ 150$
- The amount due after 3 years $=P+\mathrm{Pni}=1000+150=\$ 1150$

Compound Interest

- Unlike simple interest, compound interest accumulates the interest amount at the end of each period on the principal value. Thus, the new interest amount will larger given a higher principal value.

Example

An engineering company has loaned money to a staff engineer. The loan is $\$ 1000$ for 3 years at 5% per year simple interest. How much money will the engineer repay at the end of 3 years? Solution
Year 1 interest = 1000 (0.05) = \$ 50
Total amount due after 1 year $=1000+50=\$ 1050$
Year 2 interest = 1050 (0.05) = \$ 52.50
Total amount due after 2 year $=1050+52.5=\$ 1102.50$
Year 3 interest $=1102.50(0.05)=\$ 55.13$
Total amount due after 3 year $=1102.50+55.13=\$ 1157.63$
Can you come up with a general formula for this

Compound Interest Formula

$$
\begin{array}{cc}
P=F\left[\frac{1}{(1+i)^{n}}\right] & A=P\left[\frac{i(1+i)^{n}}{(1+i)^{n}-1}\right] \\
F=P(1+i)^{n} & A=F\left[\frac{i}{(1+i)^{n}-1}\right] \\
P=A\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}\right] & F=A\left[\frac{(1+i)^{n}-1}{i}\right]
\end{array}
$$

Example

- Suppose that $\$ 1,000$ is borrowed at a rate of 16% interest per annum. If this loan was for a 4 - year period, calculate and show:
a. The payment per year.
b. The amount that has to be paid at the end of four year, if payments were not paid annually.

Cash Flow Diagram

- A diagram the illustrates the inflow and outflows of money (cash in and cash out).
- An arrow donates if the cash is withdrawn or added

Example

A father works to deposit an unknown lump - sum amount into an investment opportunity 2 years from now that is large enough to withdraw $\$ 4000$ per year for state university tuition for 5 years starting 3 years from now. If the rate of return is estimated to be 15.5% per year, construct the cash flow diagram.

