CB 311
 Introduction to Construction Management

Dr. Mohamed Saeid Eid

$$
\text { Fall - } 2017
$$

Review

- Interest

$$
P=F\left[\frac{1}{(1+i)^{n}}\right] \quad A=P\left[\frac{i(1+i)^{n}}{(1+i)^{n}-1}\right]
$$

- Time value of money

$$
\begin{array}{cc}
F=P(1+i)^{n} & A=F\left[\frac{i}{(1+i)^{n}-1}\right] \\
P=A\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}\right] & F=A\left[\frac{(1+i)^{n}-1}{i}\right]
\end{array}
$$

- Change of present value to future and vise versa

Computing using Standard Notations

- Standard Notations are simple description of the desired calculation process.
- The Standard Notation can thus be mapped on to a table for simplicity.

Computation using Standard Notations

- $P=F\left[\frac{1}{(1+i)^{n}}\right]$

$$
P=F(P / F, i \%, n)
$$

- $F=P(1+i)^{n}$

$$
F=P(F / P, i \%, n)
$$

- $P=A\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}\right]$
$P=A\left({ }^{P} / A, i \%, n\right)$

Computation using Standard Notations

- $A=P\left[\frac{i(1+i)^{n}}{(1+i)^{n}-1}\right] \quad A=P(A / P, i \%, n)$
- $A=F\left[\frac{i}{(1+i)^{n}-1}\right]$
$A=F\left({ }^{A} /{ }_{F}, i \%, n\right)$
- $F=A\left[\frac{(1+i)^{n}-1}{i}\right] \quad F=A(F / A, i \%, n)$

Table D-16 Interest Factors for 10.00%

Example

- If a woman deposits $\$ 600$ now, $\$ 300$ two years from now, and $\$ 400$ five years from now, how much will she have in her account 10 years from now if the interest rate is 5% per year?
- Try to solve it with normal method

Solution

$$
F=\$ 600(1.05)^{10}+\$ 300(1.05)^{8}+\$ 400(1.05)^{5}=\$ 1931.08
$$

	CompoundAmount Factor	Present- Worth Factor	CompoundAmount Factor	SinkingFund Factor	Present- Worth Factor	CapitalRecovery Factor
N		$\begin{gathered} \text { CONVERT } \\ \boldsymbol{F} \text { TO } P \\ (P / F, I, N) \end{gathered}$	Convert A to F ($F / A, I, N$)	$\begin{gathered} \text { Convert } \\ F \text { TO } A \\ (A / F, 1, N) \end{gathered}$	$\begin{aligned} & \text { Convert } \\ & \boldsymbol{A} \text { to } P \\ & (P / A, I, N) \end{aligned}$	$\begin{gathered} \text { CONVERT } \\ \boldsymbol{P}_{\text {TO } A} \\ (\boldsymbol{A} / \boldsymbol{P}, \mathrm{I}, \mathrm{~N}) \end{gathered}$
1	1.0500	0.9524	1.0000	1.0000	0.9524	1.0500
2	1.1025	0.9070	2.0500	0.4878	1.8594	0.5378
3	1.1576	0.8638	3.1525	0.3172	2.7232	0.3672
4	1.2155	0.8227	4.3101	0.2320	3.5460	0.2820
5	1.2763	0.7835	5.5256	0.1810	4.3295	0.2310
6	1.3401	0.7462	6.8019	0.1470	5.0757	0.1970
7	1.4071	0.7107	8.1420	0.1228	5.7864	0.1728
8	1.4775	0.6768	9.5491	0.1047	6.4632	0.1547
9	1.5513	0.6446	11.0266	0.0907	7.1078	0.1407
10	1.6289	0.6139	12.5779	0.0795	7.7217	0.1295
11	1.7103	0.5847	14.2068	0.0704	8.3064	0.1204
12	1.7959	0.5568	15.9171	0.0628	8.8633	0.1128

$F=\$ 600 * 1.6289+\$ 300 * 1.4775+\$ 400 * 1.2763=$ \$1931.08

Example

- How much money would a man have in his account after 8 years if he deposited $\$ 1,000$ per year for 8 years at 14% per year starting 1 year from now?

Table D-20 Interest Factors for 14.00%

	Single	MENT		UNIFOR	Eries	
	CompoundAmount Factor	Present- Worth Factor	Compound- Amount Factor	SinkingFund Factor	Present- Worth Factor	CapitalRecovery Factor
N	$\begin{gathered} \text { CONVERT } \\ \boldsymbol{P}_{\text {To }} \boldsymbol{F} \\ \left(F / P_{, I, N)}\right. \end{gathered}$	$\begin{aligned} & \text { Convert } \\ & \boldsymbol{F} \text { to } \boldsymbol{P} \\ & (P / F, I, N) \end{aligned}$	$\begin{gathered} \text { CONVERT } \\ A \text { to } F \\ (F / A, I, N) \end{gathered}$	$\begin{gathered} \text { CONVERT } \\ F_{\text {TO } A} \\ (A / F, I, N) \end{gathered}$	$\begin{gathered} \text { CONVERT } \\ A \text { to } P \\ (P / A, I, N) \end{gathered}$	$\begin{gathered} \text { CONVERT } \\ \boldsymbol{P}_{\text {TO } A} \\ (\mathbf{A} / \mathrm{P}, \mathrm{I}, \mathrm{~N}) \end{gathered}$
1	1.1400	0.8772	1.0000	1.0000	0.8772	1.1400
2	1.2996	0.7695	2.1400	0.4673	1.6467	0.6073
3	1.4815	0.6750	3.4396	0.2907	2.3216	0.4307
4	1.6890	0.5921	4.9211	0.2032	2.9137	0.3432
5	1.9254	0.5194	6.6101	0.1513	3.4331	0.2913
6	2.1950	0.4556	8.5355	0.1172	3.8887	0.2572
7	2.5023	0.3996	10.7305	0.0932	4.2883	0.2332
8	2.8526	0.3506	13.2328	0.0756	4.6389	0.2156
9	3.2519	0.3075	16.0853	0.0622	4.9464	0.2022
10	3.7072	0.2697	19.3373	0.0517	5.2161	0.1917

\$13,232.8

Nominal and Effective Interest Rates

When interest rates are compounded within the same period

Nominal and Effective Interest Rates

$$
i_{e f f}=\left(1+\frac{i}{m}\right)^{m}-1
$$

- Where m is the compounded period within the same year.

Example

- If a loan of $1,000 \mathrm{LE}$ is made a nominal interest rate of 10% per year, compounded quarterly, what is the effective interest rate?

10.4\%

Example

- If a woman deposits 1000 LE now, and 3000LE 4 years from now and 1500 LE 6 years from now at an interest rate of 12% compounded semiannually, how much money will she have in her account 10 years from now?

$$
i_{e f f}=\left(1+\frac{0.12}{2}\right)^{2}-1
$$

11,634.5 LE

Example

- If a man deposits $\$ 500$ every 6 months for 7 years, how much money will he have in his account after he makes his last deposit if the interest rate is 20% per year compounded quarterly?

14,244.55 LE

Method 1

i\% per year = 20\%
i\% per 6 months $=20 \% / 2=10 \%$ per period \rightarrow (nominal)
Compounding quarterly (every 3 months) \rightarrow twice in the 6 months
Then i effective $=(1+i / m)^{m}-1=10.25 \% \quad(m=2)$

$$
F=A\left[\frac{(1+i)^{n}-1}{i}\right]
$$

$A=500, i=10.25 \%$ and $n=14 \rightarrow F=\$ 14,244.55$

Method 2

$\$ 500 / 6$ months every 2 periods

> i\% per year = 20\%
i\% per period $=20 \% / 4=5 \%$ per period
Covert money from 500 every 6 months to money every period (3 months)

Method 3

i\% per year = 20\%
i\% per period $=20 \% / 4=5 \%$ per period

$$
F=P(1+i)^{n}
$$

$P=\$ 500, i=5 \%, n=2,4,6, \ldots .26$
$\mathrm{F}=500$ * Factor $_{\mathrm{n}=2}+$ Factor $_{\mathrm{n}=4}+\ldots+$ Factor $_{\mathrm{n}=26}$)

F = \$500 * (Sum of factors from 2 to 26 @ step =2)

