CB 510 Project Management

Dr. Mohamed Saeid Eid

Fall - 2017

What we learned so far

- Planning activities
- Relationships of activities
- Plan representation
 - AOA
 - AON

Scheduling

• Scheduling is determining the start and end dates of each activity

• Consequently, a planner can determine the project total duration

Critical Path Method (CPM)

- CPM was developed in the 1950s
- CPM is a simple and systematic algorithm to calculate the start and end dates of the activities, determine the project duration, and define the critical path
- Critical path is a set of activities in the project that cannot be delayed without delaying the project (later on that later)

CPM

• CPM calculation requires

 \checkmark Develop the relationship of activities

✓ Define the overlap and lag of activities

□Calculate the duration of each activity □

Carryout the forward path

Carryout the backward path

Calculate floats

Determine the critical path

 $d_i = \frac{q_i}{p_m}$

Where, *i* is the activity, *d* is the duration of the activity, *q* is the quantity of work in the activity, and *p* is the production rate of construction crew *m*.

CPM – Forward and Backward Paths

- Each activity has early and late dates
 - Early Start (ES)
 - Earliest possible start date of an activity
 - Early Finish (EF)
 - Earliest possible finish date of an activity
 - Late Start (LS)
 - Latest start date of an activity without delaying the project
 - Late Finish (LF)
 - Latest finish date of an activity without delaying the project

ES	Code	EF
LS	Dur	LF

CPM – Forward and Backward paths

- Forward path steps
 - Calculate ES

ES = max [Predecessors' EF]

- Calculate EF
 - EF = ES + Duration

CPM – Forward and Backward paths

- Backward path steps
 - Calculate LF
 - LF = min [Successors' LS]
 - Calculate LS
 - LS = LF Duration

Example

Activity	Predecessor	Duration	
А		5	
В	А	3	
С	А	2	
D	В	7	
E	B,C	3	
F	D,E	5	
G	E	6	
Н	F,G	2	

CPM – Floats

- Free Float (FF)
 - FF is the amount of delay the activity can have without delaying its immediate successors

```
FF = min [Successors' ES] - EF
```

- Total Float (TF)
 - TF is the amount of delay the activity can have without delaying the total project

TF = LS - ES = LF - EF

Example

Activity	Predecessor	Duration	
А		5	
В	А	3	
С	А	2	
D	В	7	
E	B,C	3	
F	D,E	5	
G	E	6	
Н	F,G	2	

Critical Activities and Critical Path

- Critical Activities are the activities with Zero TF
- Critical Path is the set of Critical Activities

Note:

Critical path must be continuous There can exist more than one critical path If an activity has a TF = 0, then the FF should be = 0 if an activity has a FF = 0, the TF DOES NOT have to be = 0

Last week example

Code	Description	Predecessor	Duration	Code	Description	Predecessor	Duration
10	Mobilization and site setup	NA	2	100	Construct center pier	70	6
14	Procure Reinforcement	NA	1	110	Erect north precast beam	16,80,90,100	2
16	Procure Precast Beams	NA	1	120	Erect south precast beam	16,80,90,100	2
20	Excavate left abutment	10	5	130	Fill left embankment	80	2
30	Excavate right abutment	10	5	140	Fill right embankment	90	2
40	Excavate Center pier	10	2	150	Construct deck slab	110,120	5
50	Foundation left abutment	14,20	6	160	Left road base	130	3
60	Foundation right abutment	14,30	6	170	Right road base	140	3
70	Foundation center pier	14,40	5	180	Road surfacing	150,160,170	5
80	Construct left abutment	50	8	190	Bridge railing	150	1
90	Construct right abutment	60	8	200	Clear site	180, 190	2