CB 519

Construction Project Management 2

Dr. Mohamed Saeid Eid

$$
\text { Fall - } 2017
$$

Stochastic Scheduling - Uncertainty

- Activities duration
- How do we calculate duration?
- Are production rates deterministic?
- Assume we have an excavation activity with total duration of 30days. What does the 30days actually means?

Stochastic Scheduling - Uncertainty

- Stochastic/uncertain activity duration

Can CPM handle such uncertainty?

CPM duration drawback

- CPM is a single and deterministic duration estimate model.
- Such estimate ignores the probabilistic and variability associated with construction.
- Variation can be due to crew's efficiency, weather, management conditions, etc.

PERT

- Program Evaluation Review Technique (PERT)
- Duration $\left(T_{e}\right)$ is calculated through three time estimates
- Optimistic (T_{o})
- Most-likely $\left(T_{m}\right)$

$$
T_{e}=\frac{T_{o}+4 T_{m}+T_{p}}{6}
$$

- Pessimistic $\left(T_{p}\right)$

Example

Activity	Predecessor	$\mathbf{T}_{\mathbf{o}}$	$\mathbf{T}_{\mathbf{m}}$	$\mathbf{T}_{\mathbf{p}}$	$\mathbf{T}_{\mathbf{e}}$
A	--	1	1	1	
B	A	3	7	11	
C	A	2	6	7	
D	A	1	3	8	
E	B	1	3	5	
F	B,C	5	7	9	
G	D	5	8	9	
H	E,F	3	7	9	
J	F	2	5	7	
K	F,G	3	3	3	
L	H,J,K	2	5	8	

Example

Activity	Predecessor	$\mathbf{T}_{\mathbf{o}}$	$\mathbf{T}_{\mathbf{m}}$	$\mathbf{T}_{\mathbf{p}}$	$\mathbf{T}_{\mathbf{e}}$
A	--	1	1	1	1
B	A	3	7	11	7
C	A	2	6	7	5.5
D	A	1	3	8	3.5
E	B	1	3	5	3
F	B,C	5	7	9	7
G	D	5	8	9	7.666667
H	E,F	3	7	9	6.666667
J	F	2	5	7	4.833333
K	F,G	3	3	3	3
L	H,J,K	2	5	8	5

Probability

-What is probability?

- Likelihood that an event will occur
-What is Probability distribution?
- Probability function of a variable that governs its probability.

Exploring probability distributions

- Coin and dice games

Probability

Standard Normal

Probability

- Mean
- The average value at 50% probability
- Standard deviation

- A number that express how much the values of each group differ from the mean
- Variance
- Describes how are the numbers spread out from the mean.

Probability

- Mean (T_{e})

$$
T_{e}=\frac{T_{o}+4 T_{m}+T_{p}}{6}
$$

- Standard deviation (s)

$$
\mathrm{s}=\frac{T_{p}-T_{o}}{6}
$$

- Variance (v)

$$
\mathrm{v}=s^{2}
$$

Example

Activity	Predecessor	$\mathbf{T}_{\mathbf{o}}$	$\mathbf{T}_{\mathbf{m}}$	$\mathbf{T}_{\mathbf{p}}$	$\mathbf{T}_{\mathbf{e}}$	\mathbf{s}
A	--	1	1	1	1	
B	A	3	7	11	7	
C	A	2	6	7	5.5	
D	A	1	3	8	3.5	
E	B	1	3	5	3	
F	B,C	5	7	9	7	
G	D	5	8	9	7.666667	
H	E,F	3	7	9	6.666667	
J	F	2	5	7	4.833333	
K	F,G	3	3	3	3	
L	H,J,K	2	5	8	5	

Example

Activity	Predecessor	$\mathbf{T}_{\mathbf{o}}$	$\mathbf{T}_{\mathbf{m}}$	$\mathbf{T}_{\mathbf{p}}$	$\mathbf{T}_{\mathbf{e}}$	\mathbf{s}	\mathbf{v}
A	--	1	1	1	1	0	0
B	A	3	7	11	7	1.333333	1.777778
C	A	2	6	7	5.5	0.833333	0.694444
D	A	1	3	8	3.5	1.166667	1.361111
E	B	1	3	5	3	0.666667	0.444444
F	B,C	5	7	9	7	0.666667	0.444444
G	D	5	8	9	7.666667	0.666667	0.444444
H	E,F	3	7	9	6.666667	1	1
J	F	2	5	7	4.833333	0.833333	0.694444
K	F,G	3	3	3	3	0	0
L	H,J,K	2	5	8	5	1	1

Stochastic properties of critical path

- Duration of critical path

$$
T_{\text {project }}=\sum T_{e_{C P}}
$$

- Variance of critical path

$$
V_{\text {project }}=\sum V_{C P}
$$

- Standard deviation of critical path

$$
S_{\text {project }}=\sqrt{V_{\text {project }}}
$$

What did we gain from this?

- Even though we still have T_{e} at 50% probability, we have better understanding on the likelihood of this estimation.
- Through the standard deviation and variance, we can predict the probability of finishing the activities on time, given the changes in any activity.

Another advantage of probabilistic distribution

- Since we have the properties of the stochastic project, we can evaluate the probability of completing the project (or a task) at a given date.

Probability of completing before a given time.

What if we want to check the probability of finishing the project before 25 days?

$$
\mathrm{Z}=\left(\mathrm{T}_{\text {new }}-\mathrm{T}_{\mathrm{e}}\right) / \mathrm{s}
$$

Then we can calculate the probability using the following table

z	0.00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
0.0	. 5000	. 5040	. 5080	. 5120	. 5160	. 5199	. 5239	. 5279	. 5319	. 5359
0.1	. 5398	. 5438	. 5478	. 5517	. 5557	. 5596	. 5636	. 5675	. 5714	. 5753
0.2	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	. 6103	. 6141
0.3	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 6517
0.4	. 6554	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	. 6879
0.5	. 6915	. 6950	. 6985	. 7019	. 7054	. 7088	. 7123	. 7157	. 7190	. 7224
0.6	. 7257	. 7291	. 7324	. 7357	. 7389	. 7422	. 7454	. 7486	. 7517	. 7549
0.7	. 7580	. 7611	. 7642	. 7673	. 7704	. 7734	. 7764	. 7794	. 7823	. 7852
0.8	. 7881	. 7910	. 7939	. 7967	. 7995	. 8023	. 8051	. 8078	. 8106	. 8133
0.9	. 8159	. 8186	. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	. 8389
1.0	. 8413	. 8438	. 8461	. 8485	. 8508	. 8531	. 8554	. 8577	. 8599	. 8621
1.1	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	. 8830
1.2	. 8849	. 8869	. 8888	. 8907	. 8925	. 8944	. 8962	. 8980	. 8997	. 9015
1.3	. 9032	. 9049	. 9066	. 9082	. 9099	. 9115	. 9131	. 9147	. 9162	. 9177
1.4	. 9192	. 9207	. 9222	. 9236	. 9251	. 9265	. 9279	. 9292	. 9306	. 9319
1.5	. 9332	. 9345	. 9357	. 9370	. 9382	. 9394	. 9406	. 9418	. 9429	. 9441
1.6	. 9452	. 9463	. 9474	. 9484	. 9495	. 9505	. 9515	. 9525	. 9535	. 9545
1.7	. 9554	. 9564	. 9573	. 9582	. 9591	. 9599	. 9608	. 9616	. 9625	. 9633
1.8	. 9641	. 9649	. 9656	. 9664	. 9671	. 9678	. 9686	. 9693	. 9699	. 9706
1.9	. 9713	. 9719	. 9726	. 9732	. 9738	. 9744	. 9750	. 9756	. 9761	. 9767
2.0	. 9772	. 9778	. 9783	. 9788	. 9793	. 9798	. 9803	. 9808	. 9812	. 9817
2.1	. 9821	. 9826	. 9830	. 9834	. 9838	. 9842	. 9846	. 9850	. 9854	. 9857
2.2	. 9861	. 9864	. 9868	. 9871	. 9875	. 4878	. 9881	. 9884	. 9887	. 9890
2.3	. 9893	. 9896	. 9898	. 9901	. 9904	. 9906	. 9909	. 9911	. 9913	. 9916
2.4	. 9918	. 9920	. 9922	. 9925	. 9927	. 9929	. 9931	. 9932	. 9934	. 9936
2.5	. 9938	. 9940	. 9941	. 9943	. 9945	. 9946	. 9948	. 9949	. 9951	. 9952

More examples

-What is the probability of finishing before 23 days?

- What is the probability of finishing before 19 days?
- What is estimated project duration if we want to finish with probability 75\%?

