Systems Analysis in Construction

CB312

Construction & Building Engineering Department- AASTMT

by

Ahmed Elhakeem & Mohamed Saeid

Decision Analysis

Utility Theory Payoff Matrix Decision Tree

What would you do when you face options?

• Which car would you buy, BMW 320i vs. Honda Accord VTI?

• Which elective class would you take, special topics in concrete or construction engineering?

How do you make a choice?

Utility Theory

- Utility is how you measure your preference over different options
 - For cars: Fast, reliable, economic, etc.
- Utility thus enables us to determine the option that maximizes our objectives.
- Utility requires the player (decision maker) to be rational.

Decision Theory

• If we are faced with multiple options, knowing the utility (outcome) of each decision, we can determine the best alternative for ourselves.

• In decision theory, a player (decision maker) faces nature to maximize his/her own outcome.

d = d(max [*u*]) d: decision, u: utility

Example

- Assume you need to determine whether to invest in a bank (A) with interest rate of 12% or bank (B) with interest rate of (15%). Which on will you decide on?
 - This is in deed an easy question, we know our utility (the interest rates) and we will choose the bank with highest rate.

Stochastic Nature

- What if we know only the utility, but with some probability of happening.
- Consider the following example (Payoff table)

decision	State of nature	
	Oil	Dry
Drill for oil Sell the land	LE700,000 LE90,000	-LE100,000 LE90,000
Chance of state	1/4	3/4

State of Nature

• Nature is uncontrollable. However, it reacts with some rules, laws, and probabilities.

decision	State of nature	
_	Oil	Dry
Drill for oil Sell the land	LE700,000 LE90,000	-LE100,000 LE90,000
Chance of state	1/4	3/4

Expected Utility

- Since the utility of each choice is not deterministic, we need to calculate the Expected Utility, *E[u]*.
- Expected utility is the outcome of each decision through the multiplication of the utility (*u*) by the probability of happening (*P*)

decision	State of nature	
	Oil	Dry
Drill for oil Sell the land	LE700,000 LE90,000	-LE100,000 LE90,000
Chance of state	1/4	3/4

Expected Utility

- E[u]_{Drill} = 0.25 * 700,000 + 0.75 * -100,000 = LE 100,000
- E[u]_{Sell} = 0.25 * 90,000 + 0.75 * 90,000 = LE 90,000

decision	State of nature	
	Oil	Dry
Drill for oil Sell the land	LE700,000 LE90,000	-LE100,000 LE90,000
Chance of state	1/4	3/4

Example - Gambling

decision	State of nature	
	Win	Loose
Play Do not play	LE6 LE0	-LE9 LE0
Chance of state	2/3	1/3

Decision Tree

- When facing multiple options, decision tree can be very useful.
- Decision tree is even better in extensive decision (decisions within decisions).

Decision Tree for Oil example

Backward induction: solving from right to left

