Assignment Problem

Assignment Problem

- An assignment problem seeks to minimize the total cost assignment of m workers to m jobs, given that the cost of worker i performing job j is $c_{i j}$.
- It assumes all workers are assigned and each job is performed.
- An assignment problem is a special case of a transportation problem in which all supplies and all demands are equal to 1 ; hence assignment problems may be solved as linear programs.
- The network representation of an assignment problem with three workers and three jobs is shown on the next slide.

Assignment Problem

Network Representation

Assignment Problem

- LP Formulation
$\operatorname{Min} \underset{i j}{\sum \sum c_{i j} x_{i j}}$
s.t. $\sum_{j} x_{i j}=1$ for each agent i

$$
\begin{array}{cl}
\sum x_{i j}=1 & \text { for each task } j \\
i \\
x_{i j}=0 \text { or } 1 & \text { for all } i \text { and } j
\end{array}
$$

Illustration: Who Does What?

An electrical contractor pays his subcontractors a fixed fee plus mileage for work performed. On a given day the contractor is faced with three electrical jobs associated with various projects. Given below are the distances between the subcontractors and the projects.

Projects

Subcontractor		\underline{A}	\underline{B}	\underline{C}
	Westside	50	36	16
Federated	28	30	18	
Goliath	35	32	20	
Universal	25	25	14	

How should the contractors be assigned to minimize total mileage costs?

Illustration: Who Does What?

Network Representation

Illustration: Who Does What?

Linear Programming Formulation

Min $50 x_{11}+36 x_{12}+16 x_{13}+28 x_{21}+30 x_{22}+18 x_{23}$

$$
+35 x_{31}+32 x_{32}+20 x_{33}+25 x_{41}+25 x_{42}+14 x_{43}
$$

s.t. $x_{11}+x_{12}+x_{13} \leq 1$
$x_{21}+x_{22}+x_{23} \leq 1$
$x_{31}+x_{32}+x_{33} \leq 1$
$x_{41}+x_{42}+x_{43} \leq 1$
$x_{11}+x_{21}+x_{31}+x_{41}=1$
$x_{12}+x_{22}+x_{32}+x_{42}=1$

$$
x_{13}+x_{23}+x_{33}+x_{43}=1
$$

$$
x_{i j}=0 \text { or } 1 \text { for all } i \text { and } j
$$

Illustration: Who Does What?

- The optimal assignment is:

Subcontractor	Project	Distance
Westside	C	16
Federated	A	28
Goliath	(unassigned)	
Universal	B	25

Total Distance = 69 miles

Assignment Problems

- Vogal's Approximation Method

Example 1: Who Does What?

Vogal's Approximation Method

	A	B	C	Dummy
Westside	50	36	16	0
Federated	28	30	18	0
Goliath	35	32	20	0
Universal	25	25	14	0

END of Network Models

