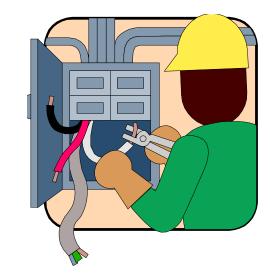

- An <u>assignment problem</u> seeks to minimize the total cost assignment of *m* workers to *m* jobs, given that the cost of worker *i* performing job *j* is c_{ij}.
- It assumes all workers are assigned and each job is performed.
- An assignment problem is a special case of a <u>transportation problem</u> in which all supplies and all demands are equal to 1; hence assignment problems may be solved as linear programs.
- The <u>network representation</u> of an assignment problem with three workers and three jobs is shown on the next slide.

Network Representation

LP Formulation

VIIN
$$\sum C_{ij} x_{ij}$$

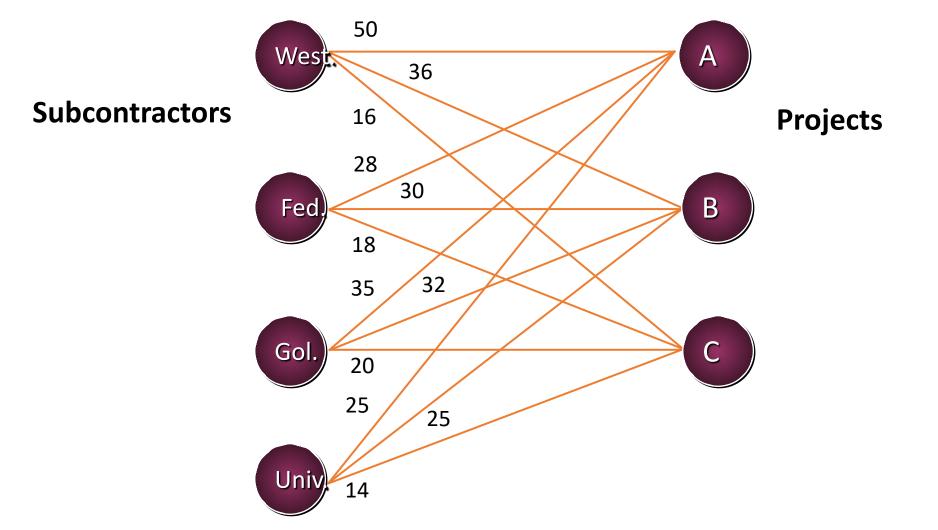
i j
s.t. $\sum x_{ij} = 1$ for each agent *i*
j


$$\Sigma x_{ij} = 1 \quad \text{for each task } j$$

$$i$$

$$x_{ij} = 0 \text{ or } 1 \quad \text{for all } i \text{ and } j$$

An electrical contractor pays his subcontractors a fixed fee plus mileage for work performed. On a given day the contractor is faced with three electrical jobs associated with various projects. Given below are the distances between the subcontractors and the projects.


	<u>Projects</u>			
<u>Subcontractor</u>	<u>A</u>	<u>B</u>	<u>C</u>	
Westside	50	36	16	
Federated	28	30	18	
Goliath	35	32	20	
Universal	25	25	14	

How should the contractors be assigned to minimize total mileage costs?

Network Representation

Linear Programming Formulation

 $50x_{11}+36x_{12}+16x_{13}+28x_{21}+30x_{22}+18x_{23}$ Min $+35x_{31}+32x_{32}+20x_{33}+25x_{41}+25x_{42}+14x_{43}$ $x_{11} + x_{12} + x_{13} \le 1$ s.t. $x_{21} + x_{22} + x_{23} \le 1$ $x_{31} + x_{32} + x_{33} \le 1$ $x_{A1} + x_{A2} + x_{A3} < 1$ $x_{11} + x_{21} + x_{31} + x_{41} = 1$ $x_{12} + x_{22} + x_{32} + x_{42} = 1$ $x_{13} + x_{23} + x_{33} + x_{43} = 1$ $x_{ii} = 0 \text{ or } 1 \text{ for all } i \text{ and } j$

• The optimal assignment is:

Subcontractor	Project	Distance
Westside	С	16
Federated	Α	28
Goliath	(unassigned)	
Universal	В	25

Total Distance = 69 miles

- Vogal's Approximation Method

Example 1: Who Does What?

Vogal's Approximation Method

	<u>A</u>	В	С	Dummy
Westside	50	36	16	0
Federated	28	30	18	0
Goliath	35	32	20	0
Universal	25	25	14	0

END of Network Models

