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Abstract: The goal of sustainable disaster recovery is to regain the built environment’s functionality while decreasing the vulnerability of
the society to future perturbations. This requires a new generation of decision support tools that integrate the host community’s vulnerability
assessment while taking into account the stakeholders’ interactions, needs, and preferences. The available disaster recovery research focuses
on the optimization and reconstruction of isolated projects rather than taking into account the host community’s overall vulnerability and
welfare. Moreover, the available research did not simultaneously take into account the stakeholders’ preferences and needs. To this effect, this
paper presents an agent-based model that integrates an environmental vulnerability indicator to better guide the decision-making process of
the associated stakeholders. Such an approach will aid urban planners to redevelop societies into a more resilient status. This paper imple-
ments a five-step research methodology that comprises: (1) utilizing a comprehensive assessment tool to measure community’s environ-
mental vulnerability; (2) developing the objective functions and learning algorithms of the different associated stakeholders; (3) modeling the
different attributes and potential strategies interrelated with the different stakeholders; (4) creating an interdependent multiagent-based model
that concurrently simulates the aforementioned information; and finally, (5) interpreting and analyzing the results generated from the de-
veloped model. The proposed model adopts post-Katrina recovery as the application domain, and thus was tested using the housing and
infrastructure recovery projects in three coastal counties in Mississippi. To this end, the model was able to optimize and adapt to the changing
vulnerability conditions of the host community. The model also provided an optimal utilization of the infrastructure to decrease the built
environment vulnerability to future natural hazards. This provided better outcomes in relation to environmental vulnerability and stakehold-
ers’ individual utility functions when compared to the actual implemented disaster recovery plans. For future work, this research will target
the integration of other vulnerability indicators. This will lead to more effective representation of the host communities’ complex systems,
and ultimately achieving a holistic sustainable disaster recovery. DOI: 10.1061/(ASCE)UP.1943-5444.0000349. © 2016 American Society
of Civil Engineers.

Introduction

Communities worldwide are facing an increasing rate and magni-
tude of disaster events causing nearly a million fatalities and bil-
lions in infrastructure losses in the last decade (Lim et al. 2016;
Eid et al. 2015; Economics of Climate Adaptation Working Group
2009). This situation highlights the significant vulnerability of the
built environment to perturbations and hazards. Haimes (2012)
confirmed that by pointing out that more than half of the nation’s
transportation infrastructure is vulnerable to natural hazards, in-
cluding the nation’s highways, airports, marine ports, etc. As such,
the vulnerability and sustainability of the host communities is regu-
larly questioned. Moreover, the postdisaster recovery efforts affect

the vulnerability of the built environment to future shocks (Hwang
et al. 2015). From an urban planning perspective, decreasing the
vulnerability of communities is a key factor in disaster mitigation
(Godschalk 2003). As such, it is required to (1) evaluate the vul-
nerability of the communities and (2) manage the physical structure
redevelopment as well as the land-use patterns to decrease such
vulnerabilities to future hazardous events (Schwab 1998). To this
end, as both public and private sectors are concerned about their
investments’ vulnerability to natural hazards and sustainably for
future generations, different studies were carried out within the con-
text of infrastructure, urban planning, social, economic, and envi-
ronmental perspectives (Ho and Sumalee 2014; Berke et al. 2012;
Olshansky et al. 2006, 2012; Haimes 2012; Burton 2012; Karlafits
et al. 2007; Meo et al. 2004).

Nevertheless, despite being one of the emergency management
pillars, sustainable disaster recovery is still the least understood
in the research community and among practitioners (Smith and
Wenger 2007). On addressing the growing need for a holistic sus-
tainable disaster recovery decision support tool, Haimes (2012) and
Kennedy (2007) pointed out the need for research that accounts for
the complexity of the sustainable disaster recovery process within
the social dynamic interaction. Thus, to attain sustainable disaster
recovery, a tool is required to simultaneously account for the
preferences of the community’s residents and stakeholders who
are affected by the recovery process, the different disaster recov-
ery agencies at the different levels, and the insurance companies
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responsible for financial payouts in the case of disastrous events.
Such a tool should also assimilate the vulnerability assessment of
the host community to future shocks based on the community’s
specific data in order to better guide the recovery efforts into a more
resilient built environment.

Recently, several disaster recovery models were developed to
better understand, guide, and optimize the host communities’ re-
covery process. These models utilized mixed integer linear pro-
gramming for postdisaster recovery for transportation projects
(El-Anwar et al. 2015), genetic algorithms for housing recovery
(El-Anwar et al. 2010), evolutionary algorithms for transporta-
tion recovery fund allocation (Karlafits et al. 2007), geographic
information system (GIS) to guide and manage the disaster man-
agement issues (Pradhan et al. 2007), numerical models in the
earthquake recovery process (Miles and Chang 2006), and opera-
tion research in support of disaster recovery planning (Bryson et al.
2002). However, the aforementioned models focus on the optimi-
zation and reconstruction of isolated projects rather than taking into
account the host community’s overall welfare and vulnerability.
Moreover, the tools utilized do not take into account the stakehold-
ers’ preferences and needs, which are essential for a successful and
sustainable disaster recovery process, even though they might not
be computationally efficient.

Agent-based modeling (ABM) has been utilized occasionally in
emergency management (Crooks andWise 2013; Chen et al. 2006).
However, few attempts were made using ABM to better understand
and guide the recovery efforts (Miles and Chang 2006). ABM is
considered to provide a significant basis for proactive application
in disaster recovery (Alesch and Siembieda 2012; Fiedrich and
Burghardt 2007). This can be carried out through dynamic simu-
lation that captures the different stakeholders in the impacted host
community (Nejat and Damnjanovic 2012). This goes in line with
the need to integrate the different stakeholders in the sustainable
disaster recovery process.

Goal and Objectives

The objective of this paper is to present a sustainable disaster
recovery decision support tool that can better guide the recovery
efforts to improve the community’s welfare. To this end, this paper
adopts an agent-based approach to capture the objective functions
of the associated stakeholders while integrating an environmental
vulnerability assessment tool for the host communities. Conse-
quently, this approach will help in understanding the effect of
the different recovery strategies on the host community’s vulner-
ability. As such, this tool will aid urban planners to redevelop soci-
eties into a more resilient status. Ultimately, this research will help
in better guiding the recovery efforts to increase the community’s
welfare by decreasing the vulnerability of the built environment and
increasing the individuals’ objective functions.

Background Information

Environmental Vulnerability

In 1962, Silent Spring by Rachel Carson (2002) was published,
which discussed the detrimental human-activity effects on the envi-
ronment. It was one of the first significant publications to illustrate
the environment’s vulnerability and need for better sustainable ac-
tions. Consequently, environmental vulnerability, resilience, and
sustainability has been widely discussed and researched in the last
few decades. Furthermore, through latter research, it was pointed
out that the amount of damage exerted on the infrastructure due to

the natural disaster’s impact is correlated to the host communities’
vulnerability and resilience. As such, several studies have been
conducted to investigate and quantify the communities’ environ-
mental vulnerability and resilience to hazards (Wackernagel and
Rees 1997; Nelson et al. 2007; Siche et al. 2008).

Environmental vulnerability lies at the core of the sustainable
development and recovery of the host community. The environment
is essential for the development process as it provides the goods and
services for the economy and society. In return, the host community
(residence, business, industry, etc.) exerts pressure on the environ-
ment, making it more vulnerable to perturbations and shocks. Thus,
the host community’s environment is vulnerable to damage due
to internal and external influences. Therefore, the environmental
sustainability and sustainable recovery of the host communities
are closely tied to their environmental vulnerability.

The host community’s environmental vulnerability is defined as
the tendency for an entity to be damaged (Pratt et al. 2004). There
are three main categories when evaluating the host community’s
environmental vulnerability: (1) the natural resilience to hazard;
(2) the risk and exposure to hazard; and (3) the acquired resilience/
vulnerability to hazards from past events. In other words, environ-
mental vulnerability possesses inherent resilient properties that
allows it to resist damage, proximity properties that increase
the community’s exposer to environmental damage, and adaptive
capacity that allows the environment to cope and rebound back to
an equilibrium after a disaster event.

Due to the close relationship between resilience and vulnerabil-
ity, the notion that the two terms are diametrically opposed is often
promoted (Cutter et al. 2003). This paper, however, adopts a widely
recognized approach where vulnerability and resilience are neither
totally mutually exclusive nor totally mutually inclusive. In other
words, some of the resilience properties are shared with vulnerabil-
ity and vice versa. Most of the inherent properties of the host com-
munity are considered as the overlapping part between resilience
and vulnerability (e.g., land size, region isolation, environmental
openness, etc.). These properties are inherent and affect both the
vulnerability to hazards and the ability to recover. Furthermore, this
research focuses more on the concept of vulnerability, both inherent
and exogenous. This will allow for understanding the host com-
munity’s risk to exogenous shocks while pointing out the manage-
able inherent properties that would increase resilience and decrease
vulnerability.

Since the 1990s, several indices has been developed to evaluate
communities’ environmental vulnerability to perturbation and natu-
ral hazards and its effect on the sustainability of the built environ-
ment, including the Ecological Footprint 1997 (Wackernagel and
Rees 1997), Environmental Sustainability Index 2002–2005 (Esty
et al. 2005), and Environmental Vulnerability Index 2004 (Pratt et al.
2004). One of the most recognized, and most fitting to the proposed
model as discussed later, is the environmental vulnerability index
(EVI). The EVI was developed by the South Pacific Applied Geo-
science Commission (SOPAC) by the support of Ireland, Italy, New
Zealand, Norway, and the United Nations Environment Program
(Pratt et al. 2004; Barnett et al. 2008). Though the EVI was devel-
oped to address the vulnerability of the small developing islands, it
can be applied to all countries and regions (Pratt et al. 2004).

The EVI addresses environmental vulnerability and its coupled
system with human interactions in a unique approach. Unlike other
vulnerability assessments, EVI considers the human impact as an
exogenous factor and the human system is not the recipient of the
impact, but the environment (Barnett et al. 2008). In this approach,
the human system is an integrated part of the ecosystem, not a
responder (Villa and McLeod 2002). Thus, unlike the other vulner-
ability indicators that consider the human system as a responder to

© ASCE 04016022-2 J. Urban Plann. Dev.

 J. Urban Plann. Dev., 04016022 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
T

en
ne

ss
ee

, K
no

xv
ill

e 
on

 0
7/

15
/1

6.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



shocks, the EVI allows for capturing the true overall vulnerability
of the host community. Using 50 smart indicators, the EVI mea-
sures the vulnerability of the environment of a country or a region
to future perturbations. The indicators are considered able to sum-
marize the most important and related environmental conditions and
processes (Barnett et al. 2008). Each of the smart indicators is as-
signed to one of three categories (subindicators): hazards, resis-
tance, and damage. The hazard category (or risk exposure subindex)
is a comprehensive integration of the natural risk on the environ-
ment. The resistance category (inherent resilience subindex)
measures the host’s environmental inherent internal characteristics
and its ability to cope with natural hazards. The damage category
(acquired vulnerability subindex) measures the degradation of
the environment due to external forces; thus the more degradation,
the more the environment is vulnerable to different perturbations.
Thus, EVI is able to address both the inherent and exogenous fac-
tors of the community’s environmental vulnerability as previously
discussed.

Sustainable Disaster Recovery and
Stakeholders Interactions

The participation of the different stakeholders, in the planning and
execution phases, and accounting for their needs and preferences,
increases the individual utility of the associated entities (Abdalla
et al. 2015; Boz and El-Adaway 2014; Boz et al. 2014; Glumac
et al. 2015; Feliu 2012). More importantly, Alesch and Siembieda
(2012) argue that the communities cannot recover without the in-
tegration of the stakeholders within the impacted society. More-
over, the communication between the recovery agencies, system
users, and various stakeholders increases the recovery rate and
quality of the outcome product and enhance the host community’s
resilience (Chang and Rose 2012; Olshansky et al. 2006). Conse-
quently, recent sustainable disaster recovery studies suggest that
the different stakeholders participate in both the planning and im-
plementation phases to achieve a successful disaster recovery for
the host community (Haimes 2012; Smith and Wenger 2007;
Olshansky et al. 2006). Ferdinand and Yu (2014) also noted that
the slow progress in redevelopment projects was due to the lack
of clear framework between the different stakeholders.

To address this need, the National Disaster Recovery Frame-
work (NDRF) outlines roles for the different stakeholders through
and after a disastrous event. The NDRF indicated three main
governmental agencies: (1) federal disaster recovery coordinator
(FDRC); (2) state disaster recovery coordinator (SDRC); and (3) lo-
cal disaster recovery management (LDRM). The FDRC is consid-
ered an essential player in the very beginning of a disaster recovery.
The FDRC is mainly activated when the disaster is exceeding
the SDRC’s capabilities. The SDRC oversees the disaster recovery
process, sets priorities, and directs necessary assistance. Finally,
LDRMs play a primary role in planning, managing, and commu-
nicating with residents and businesses in the affected region.

Olshansky et al. (2006), Olshansky (2006), and Cutter et al.
(2006) illustrated several disaster examples in an attempt to explain
the various factors affecting the recovery process. Through their
studies, one can understand patterns of successful recovery key
items, the relationship between the different stakeholders in the re-
covery process (in addition to the government), and residents’ com-
monly used strategies. The local governments’ interaction with the
different stakeholders in the host communities played a significant
role in the recovery stages associated with the 1994 Los Angeles
Northridge earthquake, the 1995 Kobe earthquake in Japan, and
the 2005 Hurricane Katrina (Olshansky et al. 2006). The plans
that had been negotiated and discussed with the residents in the

impacted regions achieved a higher approval rates by the residents
and increased the host communities’ welfare.

Furthermore, in regard to the different stakeholders’ strategies,
the commonly used government recovery plans included financial
compensation, repair, rebuild, upgrade the effected infrastructure,
and changes in the land use so as to decrease the host community
vulnerability to future hazards (Olshansky et al. 2006; Cutter et al.
2006). On the other hand, residents of the impact regions had fewer
postdisaster strategies, and lacked a plan to collaborate with local
agencies for the recovery planning phase. The residents’ strategies
focus on (1) repairing the damaged properties, which includes
means for financing the repair and rebuild processes; (2) selecting
insurance policies that would best fit their needs for the future
hazardous events; and (3) deciding on whether the resident should
leave or stay in the impacted region. These strategies are influenced
by the socioeconomic standards, the damage exerted by the
disastrous events, the available government recovery plans, the so-
cial ties of the resident to the community, and their outside options
(Olshansky 2006).

Preparedness also highly affects the recovery rate (Cutter et al.
2006; Smith and Wenger 2007; Olshansky et al. 2006). To this
end, the impact of the insurance policies purchased by residents
and/or subsidized by the government—as part of the host commun-
ity’s preparedness for hazardous events—played an important role
in the recovery rate in the past disastrous events. Moreover, the
National Disaster Recovery Framework (2011) indicated the sig-
nificance and importance of adequate household insurance to
achieve a successful recovery. Thus, understanding the interrela-
tionship between the different stakeholders, whether residents, in-
surers, or government agencies, as well as optimizing the disaster
strategies and plans for the associated stakeholders is essential to
achieve a sustainable disaster recovery that would increase the host
community welfare and decrease their vulnerability to future
shocks.

In modeling disaster recovery, few ABM attempts have been
carried out. The most recognized models were developed by Miles
and Chang (2003, 2004, 2006, 2011). The developed models cap-
tured the interaction between the socioeconomic agents (residents
and businesses) and the community planning after a disastrous
event. Also, the model was developed to allow for estimation of
the incurred damages to the community (built environment, eco-
nomics, and personal). Nejat and Damnjanovic (2012) also pre-
sented a multiagent-based model with a game theory approach
for the residential households’ recovery. The model takes into ac-
count the social interaction between the homeowners and their
neighbors. The agents’ objective is to maximize their expected util-
ity where the authors assumed a bounded rationality of the different
agents. Nevertheless, the aforementioned attempts neither inte-
grated the host community vulnerability assessment into the model
nor provided a decision support tool for future disaster events. As a
result, and in order to lay down the foundation for the proposed
model, the following section briefly discusses agent-based model-
ing’s history and concept as well as the several learning modules
that is utilized in this research.

Agent-Based Modeling

Nobel laureate and well-known economist Thomas Schelling
(1978) published a book in 1978 titled Micromotives and Macro-
behavior discussing the relationship between the people behavior
and the system collective performance. The author explained how
the characteristics of the individuals, who are related to each other,
compromise the “system aggregated characteristics.” Since then,
a lot of research has been carried out to investigate the different
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individuals’ behaviors and attributes and how do they build up the
aggregated system. Consequently, agent-based modeling (ABM)
has shown great advantages in approaching complex systems of
systems, where different stakeholders contribute to the collective
welfare of the system. ABM is a computational approach for sim-
ulating autonomous agents, which represent the different system’s
stakeholders, in order to evaluate the system performance due to
the agents’ interactions. ABM allows for capturing the fine grains
of the systems through building it in a root to grass methodology.
As Macy and Willer (2002) explain, “ABM provide theoretical
leverage where the global patterns of interest are more than the ag-
gregation of individual attributes, but at the same time, the emer-
gent pattern cannot be understood without a bottom up dynamical
model of the microfoundations at the relation level.”ABM has been
adopted and utilized in studying real-life applications in sociology,
economics, engineering, urban development, biology, and many
other fields in order to explain and model different problems like
social norms, collective behavior, civil violence, the standing ova-
tion problem, analysis of construction dispute resolution, dynamics
of construction projects, collaborative negotiation, land-use fore-
casting, cities’ walkability assessments, highway transportation
infrastructure systems, urban dynamics modeling, investigating
the relationship between urban form and traveling behavior, retail
businesses dynamics, and humanitarian aid efforts (Mostafavi
et al. 2015; Zhu 2015; Badwi et al. 2014; Zhao and Peng 2015;
Yin 2013; Crooks and Wise 2013; Du and El-Gafy 2012; Du
and Wang 2011; El-Adaway and Kandil 2010; Miller and Page
2004; Epstein 2001, 2002; Peña-Mora and Chun-Yi 1998; Axelrod
1986).

In defining autonomous agents, Macy and Willer (2002) stated
that agents follow three assumptions: (1) agents are interdependent;
agents interact and affect each other, and agents influence each
other in the response they receive from others’ influences; (2) agents
follow simple rules; though they are complex in nature, they tend
to follow rules either in forms of norms, conventions, protocols,
social habits or heuristics; and (3) agents are adaptive; agents adapt
through replication or learning. Moreover, Padgham and Winikoff
(2004) defined an intelligent autonomous agent as a system that is
reactive to the changes to the surrounding environment, follows its
objectives determinedly, is flexible, learns from failures, and is able
to interact with other agents.

Different learning models have been introduced to create in-
formed and complex agents. These agents are capable to receive
inputs from the surrounding environment and take different actions
that affect their objective and utility functions. Agents of this sort
are able to simulate complex human behavior through experience
and learning, thus enabling the research to predict and evaluate the
complex system at hand. Learning is categorized into two branches:
(1) individual, where agents learn from their own past experience;
and (2) social, where agents learn from each other’s experiences.
Either way, one key element in learning is the amount of anticipa-
tion (looking ahead) through the learning process. Learning antici-
pation can be reactive, where agents decide on an action, determine
the outcome, and then can strengthen or weaken the actions’ uti-
lizing probabilities in relation to the current state. On the other
hand, anticipatory learning describes when agents can determine
the probabilistic outcomes of the actions given the current state.
Through research in the artificial intelligence field, along with so-
cial science, phycology, and mathematics, different learning mod-
els were introduced including heuristic learning, Bayesian
Learning, Roth Erev, modified Roth Erev, Markov hidden process
(MHP), Q-learning, genetic algorithms, and derivative follower
algorithms.

Methodology

To attain the aforementioned goal and objectives, the authors devel-
oped a five-step research methodology that comprised: (1) utilizing
a comprehensive assessment tool to measure a community’s envi-
ronmental vulnerability; (2) developing the objective functions
and learning algorithms of the different associated stakeholders;
(3) modeling the different attributes and potential strategies inter-
related with the different stakeholders; (4) creating an inter-
dependent multiagent-based model that concurrently simulates the
aforementioned information; and finally, (5) interpreting and ana-
lyzing the results generated from the developed model.

In order to implement the aforementioned methodology, the
authors gathered five different data sets regarding the post-Katrina
disaster recovery for three Mississippi coastal counties—Hancock,
Harrison, and Jackson—that serve as the model’s problem domain.
The three counties suffered a great share of Hurricane Katrina’s
damage in 2005 as they were highly vulnerable to natural disasters
(Burton 2012). The associated data sets gathered are as follows:
• Collecting the preexisting conditions and generating the initial

population, ex-Katrina socioeconomic data for the three afore-
mentioned counties. The socioeconomic data were collected
from the U.S. Census Bureau for each of the 76 census tracts
across the three counties (2000, 2009, 2010, 2011, and 2012
U.S. Census).

• The environmental data required to evaluate the three counties’
environmental vulnerability were gathered on a census-tract
level using GIS maps from the National Land Cover Database
(2015), the National Agricultural Statistics Service Cropland
Data Layers (2015), and the Mississippi Automated Resource
Information System (2015). The data gathered allowed to initi-
ate the model to ex-Katrina conditions and compare it to the
post-Katrina environmental vulnerability data.

• With regard to the state disaster recovery coordinator’s (SDRC)
strategies and decision actions for the housing sector, data were
gathered from the Mississippi Development Authority (MDA)
and Mississippi Recovery Division (MRD). The data were gath-
ered through the MDA and MRD publically accessible website
for years 2007–2012. Thus, a set of action plans followed by the
SDRC was determined for the housing sector recovery and re-
storation, which constituted more than 65% of the MRD’s post-
Katrina recovery budget (Mississippi Development Authority
2015). The most recognized disaster recovery strategies were
(1) Homeowner Assistance, which includes repair, rebuilding,
and relocation financial funding to the damaged privately owned
households; (2) Public Home Assistance, which essentially tar-
geted low-income families in order to rebuild damaged building
and house them; and (3) Elevation Grants, which are an upgrade
to elevate the household up to 1.9 m (6 ft, 4 in.), thus making
the households’ more flood resilient. Furthermore, the MDA
and MRD budget and expenditure federal reports to the Federal
Emergency Management Agency (FEMA) were utilized to de-
velop the model as well as for testing and comparison purposes.

• On the infrastructure level, data were gathered for the waste-
water treatment facilities (WWTF) developed after the Katrina
disaster across the three aforementioned counties. The data
include the projects’ location, capacity, size, service coverage,
and cost. The data were collected through the Mississippi
Department of Environmental Quality (MDEQ), the associated
counties’ authorities, and the MDA federal reporting for year
2007–2012. Table 1 summarizes the different WWTFs, their
capacities, and their associated counties.

• Finally, Hurricane Katrina’s impact data for the three counties
were calculated via HAZUS-MH, simulating the Hurricane
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Katrina impact through wind gust, surge, and floods, with re-
gard to the damages applied by the Hurricane on the study
region’s households. Thus, the different damage proportions and
magnitudes were simulated and distributed on the different
agents corresponding to their proximity from the hurricane.
Moreover, the model also utilized the available historical data
(1953–2012) by Mississippi Emergency Management related
to tornados impacting the three aforementioned counties. By uti-
lizing the data’s probability density functions, a tornado hazard
micromodule was integrated into the current ABM to better
simulate the residents’ decisions in the presence of new and
recurrent shocks following the Katrina event.

Model Development

Model Assumptions

Models are simplifications of reality; as such, this model does not
claim that it captures the exact human behavior or decision-making
process. However, as found in the literature, the different learning
modules utilized best depict the learning behaviors of rationally
bounded agents through their experience. It is therefore assumed
that resident agents’ objectives are to maintain their wealth and
the disaster recovery agencies’ objectives are to increase the com-
munity welfare and decrease their vulnerability, as shown in a later
section. Moreover, the proposed agent-based model assumes the
rationality of the different stakeholders. Thus, no agent, resident,
government, or insurance will take any action or follow any strat-
egy that would decrease its objective function. Furthermore, in re-
gard to the residential agents’ social learning module, agents are
assumed to have complete information about other residents’ cur-
rent objective functions’ values and are able to determine the best
of them.

Comprehensive Environmental Vulnerability
Assessment Tool

The proposed model adopts the environmental vulnerability index
(EVI) in order to assess the host community’s environmental vul-
nerability as well as to guide the recovery efforts by the government
agencies. Such an approach aims to decrease the environmental
vulnerability of the host community while achieving the individ-
uals’ objectives. The EVI is a comprehensive environmental as-
sessment of the host community vulnerability, due to exposure to
internal and external stresses, as well as the inherent system’s resil-
ience (Villa and McLeod 2002; Pratt et al. 2004). Thus, through
mapping the indicators to the associated predefined scales, the
model can estimate the current average vulnerability of the host
community as well as the projected average change in vulnerability
caused by the stakeholders’ actions and strategies. Furthermore, the
EVI’s methodology accounts for unavailable data or inapplicable

indicators. In case of data being unavailable, a value of zero is given
to the associated indicator and average denominator is decreased by
1 (Barnett et al. 2008; Pratt et al. 2004; Villa and McLeod 2002).
Moreover, in the case of an inapplicable indicator (e.g., overfishing
in a landlocked country), a value of 1 is given to the indicator,
thus assuming it is least vulnerable (Pratt et al. 2004; Villa and
McLeod 2002).

In the data collection phase, some of the indicators were omitted
as they were unavailable at the census-tract level (marine reserve,
environmental openness, intensive Farming, etc.). Other indicators
were also omitted as they are inapplicable to the counties in the
current problem domain (isolation, relief, country dispersion, con-
flicts, etc.). Thus, following the EVI methodology discussed earlier,
Table 2 illustrates the indicators utilized in the assessment of the
host community’s environmental vulnerability. Each of the indica-
tors is mapped on a predefined scale and evaluated through a scalar
form ranging from 1 to 7, where 1 indicates the least vulnerable and
most resilient and 7 is the most vulnerable and least resilient as

Table 1. Utilized WWTFs

WWTF number County Capacity [ML=day (MG=day)]

1 Hancock 5.68 (1.5)
2 Hancock 0.76 (0.2)
3 Harrison 1.51(0.4)
4 Harrison 0.76 (0.2)
5 Harrison 5.67 (1.5)
6 Harrison 0.76 (0.2)
7 Harrison 7.56 (2.0)
8 Jackson 0.47 (0.125)
9 Jackson 7.56 (2.0)

Table 2. Utilized EVI Indicators

Indicator Category

Loss of cover Hazards
Terrestrial reserves Hazards
Renewable water Hazards
Waste production Hazards
Vehicles Hazards
Population growth Hazards
Volcanoes Hazards
Earthquakes Hazards
Tsunamis Hazards
Slides Hazards
High winds Hazards
Dry periods Hazards
Wet periods Hazards
Hot periods Hazards
Cold periods Hazards
Sea temperatures Hazards
Sulfur dioxide emissions Hazards
Total land area Resistance
Vegetation cover Resistance
Low lands Resistance
Habitat fragmentation Damage
Population Damage

7

1

2

3

4

5

6

Increase in 
Vulnerability

Increase in 
Resilience

Fig. 1. EVI vulnerability scale (adapted from Pratt et al. 2004)
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shown in Fig. 1. This approach is able to standardize the evaluation
of the indicators, taking into account the different indicators’
heterogeneity (linear, nonlinear, etc.) (Pratt et al. 2004). The scales
were studied and predefined for each of the indicators by expert
committees, utilizing technical literature, or by consultation with
specialists in the associated fields (Pratt et al. 2004; Villa and
McLeod 2002). The preset ranges of values were defined to mea-
sure the environmental vulnerability and to continue being appli-
cable across all conditions found on the planet (Pratt et al. 2004).
After all the indicators are assessed, the average of all the indicators
in each subindex is calculated, resulting in an average environmen-
tal vulnerability assessment, as shown in Eq. (1)

EVIc ¼
P

x¼X
x¼1 Scorey

X
∀ c ¼ 1; 2; : : : ;C ð1Þ

where EVIc = average environmental vulnerability index for
census tract c; X = total number of utilized indicators; and
Score = associated score of indicator x mapped on the aforemen-
tioned scales.

Stakeholders’ Interactions Overview

The proposed agent-based model represents the residents of an im-
pacted community, insurance companies offering different disaster
recovery plans, as well as the associated local disaster recovery
management (LDRM), state disaster recovery coordinator (SDRC),
and federal disaster recovery coordinator (FDRC) following the
National Disaster Recovery Framework Methodology (2011). Each
of the aforementioned agents has their own decision actions, strat-
egies, and objective functions. However, the scope of this paper is
limited to the residents and SDRC, leaving the optimization of
LDRM and FDRC strategies for future work. Furthermore, the in-
surance companies were developed as myopic agents offering serv-
ices to residents while observing their choices. Fig. 2 presents the
model overview, illustrating the modeled host community with the
different agents, residents, insurance companies, and disaster re-
covery agencies. The model takes as input the antecedent host com-
munity’s conditions, which include population size, income level
per household, education per household, household median value
per region, environmental vulnerability per census tract, etc. The
model also takes as an input the environmental conditions of the
host community, including vegetation cover, renewable water,
and waste production. This allows the model to generate the initial

conditions as well as to assess the host community’s environmental
vulnerability. The model then takes into account the disaster event
and its effect on the host community. The agent-based model then
allows for the different agents to interact, choose their strategies,
and optimize and report their recovery progress along with the
changes in the host community’s vulnerability.

Fig. 3 illustrates the agents’ interactions, which are discussed in
detail through the following sections. After the encounter of a dis-
astrous event, each resident checks the household’s damage and
assesses if repair is required. The resident at this point determines
if he/she should apply for assistance from the local disaster recov-
ery management (LDRM). Also, the resident agent determines the
compensation amount received from the insurance policy if it had
been previously purchased. The resident agent at this point gets to
decide if the current insurance policy is optimal or needs to be
changed for future shocks. Furthermore, the residents consider the
option of repairing their damaged houses or leaving the impacted
region. Meanwhile, the SDRC offers different residential disaster
recovery action plans. The plans are then transmitted to the LDRMs
that are in direct contact with the local residents. LDRMs propose
the state’s action plans to the local residents so that they can choose
one that will increase their objective functions. Moreover, the
LDRMs both check the residents’ applications for approval as well
as manage the recovery and redevelopment process (National
Disaster Recovery Framework 2011). The FDRC allocates the re-
quired funding for the SDRC’s disaster recovery plans. The SDRC
reports back the recovery progress to the FDRC, which will affect
the later funding process. Finally, the insurers offer different
disaster recovery insurance policies for the host community’s res-
idents. The residents choose the appropriate policy, pay the premi-
ums, and receive compensation if a disaster occurs.

Modeling the Different Stakeholders Objectives,
Learning Behaviors, and Strategies

Residents
Resident agents tend to increase their current wealth through
(1) maintaining their household value, (2) decreasing potential ex-
penses, and (3) increasing their income. The proposed ABM illus-
trates the resident’s objective function, shown in Eq. (2), which is
updated at each time step (month)

Zi ¼ Hi þ Ii − Ti − Piðn;mÞ þ Ciðn:mÞ − Ri ð2Þ

Host Community 

LDRM

SDRC

FDRC

Insurance 
Companies

Disastrous 
Events

Antecedent Conditions 

• Socioeconomic data
• Environmental data
• Infrastructure data
• EVI 

Recovery Progress and 
Changes in 

Vulnerability

Residents 

Fig. 2. Model overview
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where i = resident index; Zi = objective function of resident i; Hi =
household value for resident i; Ii = monthly income for resident i;
Ti = monthly distributed tax amount (income and property taxes);
Piðn;mÞ = monthly distributed insurance premium cost, if any, for
plan m offered by insurer n; Ciðn;mÞ = insurance compensation
value, if any, paid by insurer n for plan m; and Ri = monthly
self-paid repair costs.

The residents’ actions are constrained by their net income (the
difference between the residents’ monthly income and monthly
living cost). According to the Federal Highway Administration
(2014), the average household’s monthly living cost does not ex-
ceed 45% of the household’s income. Thus, the resident’s expenses
(T, P, and R) should not exceed the monthly net income as shown
in Eq. (3)

Ti þ Piðn;mÞ þ Ri ≤ 0.55Ii ð3Þ

As such, the resident has two decision variables: (1) purchasing
an insurance policy or refrain from buying any and (2) repairing the
damaged household or leave the impacted region, thus not repairing
the damaged household. To this effect, and in order to maximize
their objective function, residents tend to communicate with each
other to learn which of the decision variables increases the other
residents’ utility functions. Accordingly, genetic algorithms (GAs)
were used to represent the residents’ social learning behavior in
determining the optimum insurance plan to be purchased. Even
though GAs are computationally expensive (Bell and Lida 1997),
they are widely known for their high optimization capabilities
(Hyari and El-Rayes 2006; Elbeltagi et al. 2005; Hegazy and Ayed
1999; Li and Love 1997; Feng et al. 1997). More importantly, GAs
are considered as an efficient tool for both social and individual
learning (Riechmann 2001). The selection of GAs was due to the
GA’s ability in demonstrating the social learning of a group of indi-
viduals from each other through simulating the communication
and learning through observation (Eid et al. 2015). The algorithm
works through mimicking the most fit of the residents following
Darwin’s theory of survival of the fittest through natural selection
(Riechmann 2001; Vriend 2000).

In order for the resident agent to obtain the government recovery
fund, the resident should apply for assistance through the LDRMs.
As previously mentioned, LDRMs act as communicators between

the SDRC and local residents. Moreover, it is the LDRM’s duty to
assess the submitted recovery assistance applications by the resi-
dents, only accepting that which comply with a predefined criteria,
as shown in Fig. 2. Thus, the resident agent applies for one of the
SDRC’s disaster recovery plans that maximizes the resident’s util-
ity functions as shown Eq. (4)

E½Uj�i ¼ ðGj × AjÞ × prj ð4Þ

where E½Uj�i = expected utility of plan j for the resident i;
G = government maximum award for plan j; A = government aver-
age acceptance probability of plan j; and pr = probability utilized
from the reactive reinforced learning module, discussed in the
following.

The residents’ choices from the different offered plans depend
on the maximum expected utility function obtained across the dif-
ferent plans. However, in the case of denying the resident’s appli-
cation by the LDRM, whether for not meeting the criteria or due to
insufficient funding by the SDRC for the selected plan, the resident
agent should learn from this step, and thus choose a different plan
in the succeeding steps. Thus, the residents’ second learning mod-
ule should be an individual learning one that can capture the
experience-based learning process. To this end, Roth Erev reactive
reinforced learning (Erev and Roth 1998) was found best to depict
this learning process as it is able to capture the repetitive game be-
tween the LDRMs and residents, in addition to taking into account
the experience gained through the different attempts. The Roth
Erev reactive reinforcement learning model was introduced in the
1990s as a game theory approach to model the learning behavior of
players based on experiments and observations (Erev and Roth
1998). The algorithm methodology is to first determine which de-
cision action has been used and the associated immediate reward
(positive or negative) by applying the selected decision action as
shown in Eq. (5)

EjðkÞ ¼
�
E ¼ �1 if j ¼ k
E ¼ 0 otherwise

ð5Þ

where for each available action j, E = reward given the used action
k. If j ¼ k, E takes the value of þ1 or –1 if the application is ap-
proved or denied, respectively; otherwise, E ¼ 0.

SDRC

• Funding approved 
residential applications

• Re-distribute funding 
proportions. 

LDRM 

• Propose SDRC’s 
disaster Recovery plans

• Check the residence 
application eligibility.

• Pass approved 
application to SDRC.

FDRC

• FDRC funds SDRC in 
case of insufficient 
funds.  

Resident Agent

• Repair damaged 
property?

• Apply for government 
assistance? 

• Insurance policy?

Reactive Reinforcement 
Learning Module

Social Learning Module

Resident Resident

ResidentResident

Insurance Companies

• Insurers offer different 
disaster insurance 
policies. 

Application Approval 
Criteria 

Fig. 3. Model of overall agents’ interactions
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The second step in the algorithm is to change the propensity of
the decision actions and eventually their selection probabilities as
shown in Eqs. (6) and (7)

Resident action’s propensity∶ qjðtþ 1Þ
¼ qjðtÞ × ð1 − ϕÞ þ EjðkÞ × ð1 − εÞ ð6Þ

Resident action’s probability∶prjðtÞ ¼ qjðtÞ
�XJ

j¼1

qjðtÞ ð7Þ

where qjðtÞ = propensity of action j in time t; and ϕ and ε = for-
getting and experimenting parameters, respectively.

Both ϕ and ε allow the agent to explore more options further on.
Finally, pr is the probability distribution of action j. Thus, the Roth
Erev learning module can demonstrate the individual learning pro-
cess, through experience and experimenting with the different strat-
egies, weakening the poor outcome strategies, and strengthening
the most rewarding strategies’ probabilities.
Residents Recovery Progress. Utilizing the data gathered from
MDA and MRD, the average recovery rate was calculated for each
of the aforementioned SDRC’s plans: Homeowner Assistance,
Public Home Assistance, and Elevation Grants. Thus, as shown
in Fig. 4, at each time step, if the resident was granted a government
fund, the recovery module calculates the rate corresponding to the
funded plan, and the recovery process takes place.

Finally, each LDRM checks for the current redevelopment
progress of the local residents by (1) calculating the residents’ ini-
tial households’ values through Eq. (8) at the first time step; (2) at
each time step, each LDRM determines the current changes in

recovery and redevelopment progress through Eq. (9); and (3)
the LDRM reports the overall residents’ redevelopment progress
through Eq. (10)

Dyo ¼
XI

i¼1

Hiy ∀ y ¼ 1; 2; : : : ;Y ð8Þ

Dyt ¼
XI

i¼1

Hi ∀ y ¼ 1; 2; : : : ; Y ð9Þ

ΔDyt ¼
Dyt

Dyo

∀ y ¼ 1; 2; : : : ;Y ð10Þ

where Dyo = initial development status for county y; Dyt = current
redevelopment status at time t; ΔDyt = current change in develop-
ment at time t; Hi = household value for resident i in county y; and
I = total number of residents.

State Disaster Recovery Coordinator

Residential Disaster Recovery. The state disaster recovery
coordinator (SDRC) is considered—along with the residents—a
main controlling agent in the proposed disaster recovery ABM.
Depending on the available funds, the SDRC distributes the funds
for the different proposed disaster recovery plans. The proposed
ABM integrates the aforementioned environmental vulnerability
assessment tool into the SDRC’s objective function to better guide
the recovery efforts. Moreover, the funding distribution proportion
is adjusted at each time step depending on changes in the residents’
objective functions and the host community vulnerability corre-
sponding to each disaster recovery strategy, as shown in Eqs. (11)
and (12). To this effect, maximizing Eq. (11) and minimizing
Eq. (12) act as the SDRC’s objective function. Moreover, the
SDRC actions are constrained by the federal agency’s funds as
shown in Eq. (13)

XI

i

ΔZik ∀ k ¼ 1; 2; : : : ;K ð11Þ

XI

i

EVIi ∀ k ¼ 1; 2; : : : ;K ð12Þ

XI

i¼1

SGi ≤ TFF ð13Þ

where ΔZi = change in the resident’s i objective function when
applying for plan k; EVI = environmental vulnerability index cor-
responding to residents applying for plan k; SGi = state governmen-
tal funding for the residents i; and TFF = total federal funding for
the SDRC.

To this end, in order to redistribute the funding proportions as
well as capturing the experience-based learning of the SDRC,
Eq. (14) illustrates the utilized Roth Erev RL propensity module
that assimilates the aforementioned SDRC’s objective functions

qkðtþ 1Þ ¼ qkðtÞ½1 − ϕ� þ IRk × ð1 − εÞ ∀ k ¼ 1; 2; : : : ;K

ð14Þ
where qkðtÞ = propensity of plan k in time t and IRk = immediate
reward for applying plan k.

The calculated immediate reward is the relative fitness of the
SDRC’s objective function when plan k is applied. This is carried
out through ranking each disaster recovery plan depending on its

Current Time Step 
Conditions and 

Funds

Building Needs 
Repair?

Government 
Funds?

Determine the 
recovery/

development rate 
given the SDRC 
approved plan

Time step ++

Calculate the 
current residential 
building recovery 

status

Yes

Yes

No

No

Fig. 4. Residential building recovery module
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outcome in Eqs. (11) and (12). Essentially, the learning module acts
as the SDRC’s multiobjective function’s optimization module to
find the Pareto optimum strategy. Consequently, the model can re-
calculate the funding distribution proportions p for each plan k us-
ing the propensities from Eq. (14) as shown in Eq. (15). In contrast
to other greedy search techniques, the Roth Erev learning model is
capable of representing the temporal effect of the fund allocation’s
impact on the host community through the utilization of ϕ and ε
parameters. Thus, the learning module can guide the recovery pro-
cess through (1) maximizing the residents’ objective functions and
(2) decreasing the host community’s environmental vulnerability

pkðtÞ ¼ qkðtÞ
�XK

k¼1

qkðtÞ ∀ k ¼ 1; 2; : : : ;K ð15Þ

Infrastructure Recovery. The proposed model aims to optimize
the development of the infrastructure to minimize the environmen-
tal vulnerability of the host community while meeting the stake-
holders’ needs. Accordingly, and in line with the presented
problem domain, the SDRC was utilized to optimize the use of
the different WWTFs in the three coastal counties in Mississippi.
As previously discussed, the MDA proposed nine WWTFs to be
developed in the three aforementioned counties in the post-Katrina
recovery. Such projects aimed to meet the increasing population
growth and provide for a cleaner wastewater treatment approach.
However, to the authors’ knowledge, the MDA did not take into
account decreasing the counties’ environmental vulnerability as
an outcome for the WWTF development. Therefore, the proposed
model allows the SDRC agent to utilize the WWTFs and allocate
their services while integrating in the SDRC’s objective function of
minimizing the host community’s environmental vulnerability us-
ing the EVI, as shown in Eq. (16). The allocation of service location
per WWTF is constrained by the capacity of the WWTF, taking
into account the future population growth. Also, the WWTF service
allocation is constrained by the county in which the WWTF is
developed

Minimize
XC
1

EVIcy ∀ y ¼ 1; 2; : : : ; Y ð16Þ

where EVI is the environmental vulnerability index for census tract
c in county y.

Unlike the relationship between the SDRC and residents,
which creates a stochastic outcome, the allocation of the WWTFs
creates a deterministic change in the EVI outcome per county.
Thus, the authors investigated several optimization techniques to
be utilized for the SDRC, in order to optimize the WWTFs, in-
cluding genetic algorithms, simulated annealing, taboo search,
and dynamic programming. To this end, the SDRC uses a simu-
lated annealing optimization module that decreases the host com-
munity environmental vulnerability while taking into account the
population needs and expected growth. Simulated annealing was
found to work best as it is able to guarantee statistical optimality
(Goffe et al. 1994), unlike evolutionary algorithms, and takes into

account the multiobjective criteria of the SDRC (which dynamic
programming lacks).

Insurance
In the proposed ABM, several insurance companies are considered
as offering a variety of insurance plans that range from partial to full
coverage. A decision for each company is to determine the distri-
bution and pricing of plans to offer the population of resident fam-
ilies. Accordingly, the insurer utility function is shown in Eq. (17).
It is understood that the insurers follow risk assessment in their
objective functions. Nevertheless, following Eid et al. (2015), an
evolutionary game theory approach can be used to determine a sta-
ble postdisaster insurance profile between residents and insurers
that would increase both their utility functions

Wtþ1
n ¼Wt

nþ
XI

i¼1

�
Piðx;mÞ−Ciðx;mÞ if x¼ n

0 otherwise
∀ n¼ 1;2; : : : ;N

ð17Þ

where Wtþ1
n = insurance company n wealth at tþ 1, and Ciðx;mÞ =

zero if no disaster has occurred at time tþ 1. Thus, the aggregate
monetary utility gained by an insurance company is the difference
between the sum of the premiums paid by the resident and the sum
of the indemnities paid to the resident when a natural disaster
occurs.

It is worth noting two issues that may negatively affect the
optimum strategy profile. The first is adverse selection as the pool
will contain mostly high-risk resident families, and so the insur-
ance company will keep the premium at a fair rate (Janssen and
Karamychev 2005). It is noted though that insurers can change
rates to overcome the problem of adverse election. The second is-
sue is moral hazard as losses will always be not in the favor of the
insured pool and thus the insurance will not change the situation or
mitigate the damage for the insured party (Lee and Ligon 2001;
Breuer 2005; Doherty and Smetters 2005).

This situation emphasizes the need of an optimum postdisaster
insurance plan strategy profile where a selective value of premiums
and coverage values should be determined as well. To handle these
issues, the insurers were allowed to be myopic in their product of-
ferings and then learn from their rivals given the distribution of
population per contract. Thus, by utilizing the Eid et al. (2015) data,
three insurance companies offering three different disaster policies
were introduced from which the residents can make their choice.
The different insurance companies’ disaster policies’ premiums and
compensation ratios are found in Table 3.

Model Testing

The proposed model was developed to be modular and scalable.
Modularity allows the ability to change the different algorithms
and alter them without affecting the primary aspects of the model.
Scalability, on the other hand, is the ability to handle any number
of agents (resident, insurance ,or government) with any number of
impacted regions. To this end, through the development process of

Table 3. Insurance Companies Plans’ Premiums and Coverage Percentages

Insurance company

Plan A Plan B Plan C

Premium (%) Coverage (%) Premium (%) Coverage (%) Premium (%) Coverage (%)

Insurer number 1 1.8 70 2 75 2.8 85
Insurer number 2 2.2 80 2.8 85 3 95
Insurer number 3 2.8 85 3 95 3.28 100
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the proposed ABM, the computer model ran through incremental
testing for internal and external behaviors using structure testing
and behavior testing. Structure testing included (1) direct struc-
ture testing empirically (structure and parameter verification)
and theoretically (structure and parameter verification as well as
direct extreme-condition tests and dimensional consistency tests);
and (2) structure-oriented behavior (behavior sensitivity, extreme
condition, modified-behavior prediction, and boundary adequacy
tests). On the other hand, behavior testing was conducted to pre-
dict the accuracy of the communication and implementation. Test
agents’ were utilized for a series of regression and progression
tests. Regression testing was done to ensure that agents perform
their stated specifications and that modifications to agents do not
affect existing message handling capabilities.

Most importantly, the ABM conducted two scenarios to test the
model output as well as to compare the actual results and changes in
the region’s vulnerability and the changes in the disaster recovery
rates. This is clearly demonstrated in the forthcoming results and
analysis section.

Implementation Platform

The proposed model was implemented using GeoMason on a
NetBeans IDE 7.4 platform. GeoMason is a GIS extension to the
MASON multiagent based model, which was developed as an
open-source Java-based discrete-event multiagent simulation tool-
kit by the Department of Computer Science at George Mason Uni-
versity (Sullivan et al. 2010). GeoMason allows for the gathering of
information and editing raster and vector geospatial data. The use
of GIS made it easy to gather the needed properties of the residents
depending on their spatial attributes. Moreover, GIS facilitates the
representation of the residents, the hazardous events, and the spatial
relationship between them. Fig. 5 shows a GIS map for the three
Mississippi coastal counties of Hancock, Harrison, and Jackson
(west to east), along with the resident agents uniformly distributed
within each census tract (depending on the population size in each
census tract). The aforementioned gathered data were input to the
computer model to determine the optimum funding proportions for
each of the action plans introduced by the SDRC as well as the
residents’ choices over the different insurance policies.

Results and Analysis

The results obtained from the proposed disaster recovery agent-
based model are presented in this section for the actual and pro-
jected environmental vulnerability for the aforementioned three
counties for Hurricane Katrina. In addition, and in order to test the
model, two scenarios were simulated: (1) the SDRC’s actual budget
distribution and (2) a hypothetical uniform SDRC budget distribu-
tion. This approach will assess the model’s outcome (with learning
behaviors) in comparison to the different strategies that were ac-
tually followed or could be followed by the recovery agencies in
Mississippi. Moreover, the SDRC’s budget distribution is also rep-
resented and compared to the actual MDA budget distribution in
order to understand the reasons behind such changes in the envi-
ronmental vulnerability. Furthermore, the WWTFs’ service alloca-
tion is also presented and how it was able to provide for a less
vulnerable environment. Finally, the residents’ choices of the dif-
ferent insurance companies is illustrated to indicate the significance
of the insurance coverage as a preparedness strategy.

Environmental Vulnerability Assessment

As mentioned in the model development section, the EVI is a
comprehensive environmental assessment of the host community’s
vulnerability to internal and external shocks. Moreover, in this ap-
proach, the human system is an integrated part of the ecosystem,
not the responder (Villa and McLeod 2002). Thus, the model is able
to assess the overall environmental vulnerability of the host com-
munity. In order to evaluate the community’s overall environmental
vulnerability, the values of each of the 22 collected indicators (pre-
sented in Table 2) were mapped on the predefined scale in the EVI
manual (Pratt et al. 2004) in a scalar format. The 22 indicators ac-
count for the assessment of both the built environment inherited
vulnerability and the risk exposure, as previously discussed. EVI
scores are then calculated by taking the average of the obtained
vulnerability values across all the indicators for each census tract.
This allowed for a comparison of the environmental vulnerability
across the 76 census tracts in the three counties. Thus, this approach
will allow the SDRC to define the most vulnerable regions and al-
locate the funds accordingly so as to minimize the total vulnerabil-
ity of the host community. It should be noted that this approach
allows for prioritizing the fund allocation depending on the regions’
inherent vulnerability as well as their exposure to future shocks and
disasters.

The aforementioned steps were carried out on the actual col-
lected data (for an annual basis) for the three counties on the
census-tract level for pre-Katrina until 2012. Table 4 represents
a sample of the census tracts’ EVI values for ex-Katrina, as well
as a sample of vulnerability index of some of the collected indica-
tors (land area, vegetation cover, and population). For a better

Fig. 5. Proposed model implementation on GeoMason

Table 4. Ex-Katrina EVI

Census
tract County EVI Land

Vegetation
cover Population

1 Harrison 4 7 5 7
34.04 Harrison 3 6 1 6
39 Harrison 4 7 6 7
301 Hancock 4 7 2 7
302 Hancock 4 7 1 6
305 Hancock 5 7 2 7
403 Jackson 5 7 4 7
408 Jackson 3 6 2 4
429 Jackson 2 6 4 1
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visualization, Fig. 6 illustrates the actual environmental vulnerabil-
ity of the 76 census tracts for ex-Katrina conditions.

Fig. 7 presents the EVI per census tract for the year 2012. More-
over, Fig. 8 illustrates the change of EVI per county through the
actual recovery process for the three counties. The EVI scores
ranges between 1 (least vulnerable) and 7 (most vulnerable). It can
be observed that a significant increase occurs in the vulnerability
of the census tracts. Thus, it is noted that the actual budget distri-
bution and infrastructure projects (as shown in the next section) did
not improve the host community environmental vulnerability, but
rather decreased it. This is observed in census tracts in Jackson
County’s west side and Hancock County’s east side. Moreover,
Hancock County’s vulnerability peaked in the years 2009, 2011,

and 2012 to 3.86. This is due to the sudden increase of population
and waste production, and decrease in the vegetation through the
current infrastructure development. Meanwhile, Hancock County
WWTFs did not significantly improve in comparison to major
WWTFs carried out through Harrison County. The latter had six
major wastewater treatment facilities under construction between
the years 2008–2010, which improved the overall water quality and
decreased the county’s EVI. On the other hand, Jackson County,
which faced the least impact from Katrina, did not have the major
funding (both in the residential or the infrastructure sectors) in com-
parison to Harrison and Hancock counties. Thus, no major overall
significant change in the EVI was found. Moreover, only two major
wastewater treatment facilities were carried out in Jackson County
following the Katrina disaster, which did not positively affect the
EVI of the host community.

As discussed previously, in order to assess the proposed ABM,
two simulation scenarios were introduced to compare their results
to each other and to the actual vulnerability changes in the Missis-
sippi coastal counties. To this effect, Figs. 9 and 10 illustrate the
projected changes in EVI for the actual budget distribution and the
uniform budget distribution. Meanwhile, the proposed model was
initiated with ex-Katrina data (social and environmental), and the
multiple simulation runs were utilized to determine the projected

Fig. 6. Actual EVI per census tract—ex-Katrina

Fig. 7. Actual EVI per census tract, 2012

Fig. 8. Actual EVI change per county

Fig. 9. Projected EVI per county—actual budget distribution

Fig. 10. Projected EVI per county—uniform budget distribution
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EVI per census tract. These environmental vulnerability indices
were affected due to the proposed SDRC budget distribution, which
integrates the EVI into the SDRC’s objective function, as men-
tioned earlier. This approach targeted decreasing the host commun-
ity’s environmental vulnerability while increasing the residents’
individual utility functions. To this effect, Fig. 11 presents the pro-
jected change in the EVI per county. It can be observed that the
proposed model’s projected EVI, through the three counties, was
significantly preferable than the two simulated scenarios of actual
and uniform budget distribution. This is due the integration of the
EVI into the SDRC’s objective function to optimize the available
decision actions (budget) to decrease the community’s environmen-
tal vulnerability.

By comparing both Fig. 8 (actual EVI) and Fig. 11 (ABM
projected EVI), several observations can be made. First, Hancock
County’s average EVI value did not change. This is due to minimal
utilization of the Public Home Assistance by the county’s residents.
Such a plan decreases the vegetation cover by building new homes
over existing vegetation. Moreover, the available wastewater treat-
ment facilities proposed by the SDRC (as shown later) and opti-
mized in the proposed model were not sufficient to decrease the
host community vulnerability beyond the current values for Han-
cock County. Second, the Harrison County average projected EVI
values are close to the actual values but started off with better
values. This is due to the utilization of optimum wastewater service
distribution that decreased the host community’s environmental
vulnerability. Nevertheless, the values peaked at 3.84 at the end of
the model run due to the model’s limitations, which are further dis-
cussed in the following section. Finally, Jackson County’s project
average EVI values were also close to the actual average EVI val-
ues. However, the values started off with better indicators due to the
optimal utilization of the WWTFs’ services distribution.

Nevertheless, with regard to the simulation model limitations,
the model does not take into account the sudden change in the pop-
ulation. This will affect the population and waste production envi-
ronmental indicators and may provide significant variation when
comparing actual and projected EVI values, which indeed caused
the aforementioned results for Hancock County. The model does
however take into account the population growth by utilizing the
calculated population growth rates for each census tract. The model
does not take into account the regrowing of the vegetation cover,
however, which affects the vegetation cover environmental indica-
tor. In real life, public and private sectors and individuals regrow

trees (vegetation cover) to accommodate for losses after construc-
tion and development as well as for many other purposes. However,
there is a lack of vegetation cover regrowth data; thus, the model
did not take factor this into the calculation. This will increase the
EVI values acquired by the model in comparison to the actual EVI
values, as shown in the end of the run for Hancock, Harrison, and
Jackson counties. For a better visualization, Fig. 12 illustrates the
projected EVI per census tract for the year 2012, where it can be
observed that the model was able to decrease the census tracts’ vul-
nerability, in comparison to Fig. 7.

The following section illustrates the proposed model’s outcome
in regard to the SDRC recovery funding distribution. Thus, a com-
parison between the actual and proposed model budget distribution
can be carried out in the interest of understanding the reasons be-
hind the proposed model’s projected EVI for the host community.

SDRC Funding Distribution Comparison

The proposed model results were compared with the actual data
gathered from the Mississippi Disaster Agency (MDA) in reference
to the budget expenditure and distribution over the three residential
recovery plans: Homeowner Assistance, Public Home Assistance,
and Elevation Grant. The residential plans contributed more than
60% of the total Katrina recovery budget for the three counties
(Mississippi Development Authority 2015). Figs. 13 and 14 illus-
trate the different funding proportions used by the MDA and the
proposed ABM output, respectively. With regard to the actual
budget distribution by MDA, it can be noted from Fig. 13 the domi-
nation of the Homeowner Assistance plan over the other two plans.

Fig. 11. Projected EVI per county—proposed model

Fig. 12. Projected EVI per census tract, 2012

Fig. 13. Actual funding distribution
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This can be justified by the pressure exerted on the disaster man-
agement by that time as the Homeowner Assistance plan has the
highest demand by the residents as it awards the certified applicant
with up to $150,000 (Mississippi Development Authority 2015).

Meanwhile, the model was initiated with uniform and equal
budget distribution (1=3 each) for the Homeowner Assistance,
Public Home Assistance, and Elevation Grant. Through the model
simulation runs, the first years showed a major increase in the
Homeowner Assistance plan, up to 90% in the first half of
2007. This is due to the high reward of such plan that would, tem-
porarily, affect the residents’ utility functions. However, residents
tend to avoid such disaster recovery financial plans due to the pres-
ence of disaster insurance policies. Thus, this disaster recovery plan
budget was decreased in later years. On the other hand, also in the
first 2 years of the simulation, the Public Home Assistance plan
displayed a significant increase. Such a plan affects the environ-
mental vulnerability of the host community through decreasing
the vegetation cover. Thus, the model adapted to such negative
changes and decreased the Public Home Assistance plan budget
in the second half of the simulation to decrease its effects on
the environment. It should be noted that due to the previously men-
tioned model limitations, the model did not have any other correc-
tive actions to overcome such impacts on the host community’s
environmental vulnerability.

The Elevation Grant showed a steady increase from the begin-
ning of the simulation run and converged at 80% in the last quarter
of the simulation. The Elevation Grant increased the host com-
munity resilience to flood, increased the residential households’
values, and thus increased the residents’ utility functions with no
impact on the host community’s environmental vulnerability. To
this effect, the model reached a budget distribution of 10, 20, and
80% for the Public Home Assistance, Homeowner Assistance, and
Elevation Grant, respectively. This distribution increases the resi-
dents’ utility functions while maintaining and decreasing the host
community environmental vulnerability.

WWTF Service Distribution

As previously mentioned, the post-Katrina recovery included the
construction and development of multiple WWTFs across the three
counties. As reported in the MDA annual federal reporting (2014)
as well as reports from the MDEQ, the WWTFs targeted the

population needs and projected growth. However, such an ap-
proach did not take into account the environmental vulnerability.
To this effect, the proposed model recommended an optimal service
allocation for each of the WWTFs to minimize the total environ-
mental vulnerability per county, utilizing EVI methodology, while
meeting the needs of the population, their expected growth, and
the WWTFs’ capacities. Figs. 15 and 16 illustrate the actual and
proposed allocation of WWTFs services, respectively. It is clearly
seen that the actual distribution of WWTFs service was minimal for
Hancock County (west side), highly concentrated in the northern
region of Harrison County (middle), and significantly distributed
among the west side of Jackson County (east side). However, this
approach did not decrease the counties’ vulnerability, as seen in
Fig. 7.

Meanwhile, as seen in Fig. 16, the proposed model recom-
mended a more intense utilization of the WWTFs’ full capacity to
serve the population of the three counties, targeting the most envi-
ronmentally vulnerable regions, thus minimizing the host commun-
ity’s vulnerability. This can be observed through the increase of the
service allocation in Hancock County to take into account more
populated regions. Furthermore, for Harrison County, the WWTFs
were directed more toward the south region were the population is
concentrated and is more vulnerable to perturbations. Finally, the
east side of Jackson County was targeted as the population in this
region had minimal WWTF services. Distributing the WWTFs’
service to the most environmentally vulnerable regions helped in
decreasing the host community vulnerability as shown in Fig. 7
in comparison to Fig. 12.

Recovery Progress

In order to assess the community’s welfare, this section illustrates
how the different disaster recovery strategies affect the host com-
munities’ redevelopment. This assessment is done through quanti-
fying the residential damage per county, and the current recovery at
each time step, as previously discussed. This approach is carried

Fig. 14. Proposed ABM funding distribution

Fig. 15. Actual WWTF service allocations

Fig. 16. Proposed WWTF service allocations
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out for both of the disaster recovery strategies (actual and uni-
form budget distributions) as well as the proposed decision support
agent based model. To this end, Figs. 17–19 illustrate the recovery
progress for the counties Hancock, Harrison, and Jackson, respec-
tively, when utilizing the actual disaster recovery strategies, the
hypothetical uniform budget distribution, and the proposed
model.

By comparing the households’ recovery and redevelopment in
Figs. 17–19, the model significance can be confirmed. This is due
to the integration of vulnerability assessment in the SDRC’s objec-
tive function, which guided the fund allocation to decrease the
vulnerability of the community (as shown in a previous section) as
well as to increase the community welfare (as shown in this sec-
tion). The model outperformed both the actual disaster recovery
strategy and the uniform budget distribution. First, the overall
recovery rate of the community is higher, which is due to the dis-
tribution of the available funds depending on the needs of the com-
munity, which agrees with the findings in the previously discussed
literature. Moreover, it is notid that the model achieved more than
100% recovery in each county; this is due to the implementation
of the Elevation Grant that increases the households’ resiliency to
flood by elevating the household up to 1.9 m (6 ft, 4 in.). This type
of redevelopment requires additional work to the preexisting

conditions of the household, thus increasing the households’ value,
and requires more resources.

Resident Choices of the Different
Insurance Companies

The residents’ choices of the different insurance plans differed and
changed through the simulation runs. Fig. 20 illustrates the resi-
dents’ choices for the three aforementioned insurers along with the
choice of having no disaster insurance plan. At the beginning, the
residents were randomly distributed for the three insurance compa-
nies along with the no insurance option. By using GAs as a social
learning technique as previously discussed and following the game
theory proposed by Eid et al. (2015), the residents changed their
choices to attain the highest possible objective function through
mimicking the fittest set of residents among them. To this end, the
first half of the ABM simulation showed a relatively higher share
for insurer #3 that would give up to 100% of the damaged property
value as a compensation. As the need for such costly coverage de-
creased in the second half of the simulation, the residents’ choices
started shifting back to the other two insurance companies. Further-
more, due to the occurrence of natural hazardous events (tornados),
residents tend to purchase insurance policies (a significant decrease
in the strategy of not purchasing insurance is illustrated in the sec-
ond half in Fig. 20). Moreover, the insurance coverage also affected
the residents’ choices at the beginning of the simulation, as the res-
idents tended to avoid the Homeowner Assistance since they had
the insurance financial coverage for the time being.

Fig. 17. Hancock recovery progress

Fig. 18. Harrison recovery progress

Fig. 19. Jackson recovery progress

Fig. 20. Choices of residents over different insurance options
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Conclusion

This paper presented a disaster recovery decision support tool
through an agent-based approach that captures the objective
functions of the associated stakeholders and the environmental
vulnerability of host communities. This approach will aid urban
planners in the postdisaster recovery of impacted communities.
This will be carried out through decreasing the environmental vul-
nerability of the different regions while increasing the objective
functions of the associated stakeholders. To this end, the model rep-
resented the residents of the impacted region as well as the local
disaster recovery management (LDRM), state disaster recovery
coordinator (SDRC), and federal disaster recovery coordinator
(FDRC) and their interactions with each other. The model also pre-
sented the relationship between the residents and the insurance
companies. Thus, the agent-based model utilized two learning
modules: (1) Roth Erev reinforcement learning for the resident’s
individual learning and the SDRC budget distribution learning;
and (2) GA social learning for the residents’ attempts to achieve
an optimum disaster insurance plan that would increase their utility
functions. The model was implemented via a Java-based computer
model utilizing a GIS interface on the post-Katrina disaster recov-
ery for three coastal Mississippi counties: Hancock, Harrison,
and Jackson. Thus, the model was able to successfully represent
the interrelation between the different stakeholders in the disaster
recovery process and their impacts on each other’s objective func-
tions. The model was able to optimize the SDRC actions in regard
to the residential recovery budget as well as the infrastructure de-
velopment. Along the same line, the model utilized a comprehen-
sive and well established environmental vulnerability assessment
tool to better guide the recovery efforts. Accordingly, the model
was able to increase the community’s welfare through maximizing
the residents’ objective function and minimizing the host commun-
ity’s vulnerability to future shocks and perturbations. Ultimately,
the model provided better environmental vulnerability indices
for the three counties in comparison to what is currently achieved
by the actual disaster recovery plans carried out post-Katrina. This
is due to the integration of the vulnerability assessment tool into the
SDRC’s objective function as well as accounting for the residents’
needs. Further, the model was able to optimize the SDRC’s housing
sector recovery budget, the SDRC’s infrastructure development,
and the residents’ choices over the different disaster insurance
plans.

Future Work

The current model takes into account the residents and SDRC as the
main controlling agents, while the LDRM acts as an assessor of the
applicants eligibility. Accordingly, the model did not fully capture
the negotiation process between the local government and the res-
idents. Thus said, for future work, the authors are developing the
current agent-based model to account for LDRM interactions with
the residents and the SDRC. Moreover, the model will address the
federal disaster recovery coordinator’s (FDRC) role in the recovery
process, which highly affects the recovery funding. Furthermore,
the residents’ social learning process will take into account the
learning barriers (spatial and economic standards) that were as-
sumed negligible in the current model. The addition of business and
economic agents to the model will be beneficial to the model in
order to obtain a holistic approach into disaster recovery. Finally,
the insurance companies’ decision-making process will be further
developed as the current model illustrates them as myopic service
providers.

For simplification, this model did not take into account other
vulnerability dimensions (social and economic) that would affect
the recovery process and model’s outcome. Therefore, and in
order to provide a holistic disaster recovery decision support tool,
social and economic vulnerability indicators will be utilized and
integrated into the proposed model. These indicators, along with
the utilized environmental indicator, can give a broader understand-
ing of the complex systems associated with the disaster recovery
process. Moreover, uncertainty was not addressed in the proposed
model. Thus, future work will aim to address the uncertainty and its
impact on the proposed model’s outcome. Also, modification and
enhancements will be carried out on the infrastructure development
module to capture other aspects (transportation, construction con-
straints, etc.). Also, in order to address the model’s limitations, fu-
ture work will be guided into accounting for the sudden change in
population as well as accounting for the vegetation cover increase.
Furthermore, understanding that the ABM’s outcome is signifi-
cantly affected by the agents’ behaviors, the fully developed agent-
based model will be calibrated to capture the actual attributes and
behaviors of the different stakeholders in the host community. This
will be carried out through focus groups and questionnaires distrib-
uted to the disaster recovery agencies and the residents in Missis-
sippi after securing acceptance of associated institution review
boards. Finally, and in order to provide for further testing and val-
idation, the proposed decision support model will be implemented
in other different disaster events and their associated recovery
processes.
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